Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
\(\overline{ab}+\overline{ba}\\=a\cdot10+b+b\cdot10+a\\=10a+b+10b+a\\=(10a+a)+(10b+b)\\=11a+11b\\=11\cdot(a+b)\)
Vì \(11\cdot(a+b)\vdots11\)
nên \(\overline{ab}+\overline{ba}\vdots11\).
Ta có:
\(\overline{ab}=a\cdot10+b\)
\(\overline{ba}=b\cdot10+a\)
\(\Rightarrow\overline{ab}-\overline{ba}\)
\(=a\cdot10+b-\left(b\cdot10+a\right)\)
\(=a\cdot10+b-b\cdot10-a\)
\(=a\cdot9-b\cdot9\)
\(=9\cdot\left(a-b\right)\) ⋮ 9
Vậy với mọi \(a>b\left(a-b>0\right)\) thì \(\overline{ab}-\overline{ba}\) ⋮ 9
Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b
\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)
=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8
Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4
+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn
+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn
Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73
ab - ba
= 10a + b - 10b - a
= 9a - 9b
= 9 ( a - b ) ⋮ 9
=> đpcm
Ta có: \(\overline{ab}+\overline{ba}=10b+10a+a+b\)
\(=11a+11b\)
\(=11\left(a+b\right)\)
\(\Rightarrow\overline{ab}+\overline{ba}=11\left(a+b\right)\)
Mà \(11\left(a+b\right)\) là tích của \(11\) và \(a+b\)
\(\Rightarrow11\left(a+b\right)⋮11\)
\(\Rightarrow\overline{ab}+\overline{ba}⋮11\) (đpcm)
Phân tích cấu tạo số ta có:
\(\overline{ab}=10a+b;\overline{ba}=10b+a\)
\(=>\overline{ab}+\overline{ba}=10a+b+10b+a\)
\(=>\overline{ab}+\overline{ba}=11a+11b=11\left(a+b\right)⋮11\)
(vì tích có chứa thừa số 11);
=> ĐPCM
CHÚC BẠN HỌC TỐT....
Bài 1:
a)
\(\overline{abcd}=100\overline{ab}+\overline{cd}\)
\(=100.2\overline{cd}+\overline{cd}\)
\(=201\overline{cd}\)
Mà \(201⋮67\)
\(\Rightarrow\overline{abcd}⋮67\)
b)
\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)
\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)
\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)
\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)
\(\Rightarrow\overline{bca}⋮27\)
Bài 2:
\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)
\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)
\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)
Mà \(11⋮11\)
\(\Rightarrow\overline{ab}.11.9⋮11\)
\(\Rightarrow\overline{abcd}⋮11\).
a) Ta có : \(\overline{ab}+\overline{ba}=10a+b+10b+a\)
\(=\left(10a+a\right)+\left(b+10b\right)\)
\(=11a+11b⋮11\left(đpcm\right)\)
b) Ta có : \(\overline{ab}-\overline{ba}=10a+b-\left(10+a\right)\)
\(=\left(10a-a\right)-\left(10b-b\right)\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\left(đpcm\right)\)
a)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
b)ab-ba⋮9
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b-10b+a
= 9a - 9b
Ta thấy: 9a⋮9 ; 9b⋮9
=>ab+ba⋮9 (ĐPCM)