\(xy\ge0\)

          b) Nếu x - y + z = 0 thì 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

a/ Ta có   \(x-y=0\)

\(\Rightarrow\left(x-y\right)^2=0\Leftrightarrow x^2-2xy+y^2=0\)

\(\Rightarrow x^2+y^2-2xy=0\Leftrightarrow x^2+y^2=2xy\)

Ta có  \(x^2\ge0\) và  \(y^2\ge0\)

\(\Rightarrow x^2+y^2\ge0\)

\(\Rightarrow2xy\ge0\)

22 tháng 5 2017

b/ Ta có: \(x-y+z=0\)

\(\Rightarrow\left(x-y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2-2xy+2xz-2yz=0\)

\(\Rightarrow x^2+y^2+z^2=2\left(xy-xz+yz\right)\)

Vì \(x^2\ge0\)và  \(y^2\ge0\)và  \(z^2\ge0\)nên  \(x^2+y^2+z^2\ge0\)

\(\Rightarrow2\left(xy-xz+yz\right)\ge0\Leftrightarrow xy-xz+yz\ge0\)

10 tháng 11 2016

Ta có : x - y = 0 => x = y

Vì x = y => xy = x2 = y2 ≥ 0

=> xy ≥ 0 ( đpcm )

11 tháng 11 2016

câu 2 khó rứa 

13 tháng 7 2017

Ta có :

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}=\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(x+z\right)}\)

\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)

Từ \(z\left(x+y\right)=x\left(y+z\right)\Leftrightarrow xz+yz=xy+xz\Leftrightarrow yz=xy\Rightarrow x=z\) (1)

Từ \(x\left(y+z\right)=y\left(x+z\right)\Leftrightarrow xy+xz=xy+yz\Leftrightarrow xz=yz\Rightarrow x=y\) (2)

Từ \(z\left(x+y\right)=y\left(z+x\right)\Leftrightarrow xz+yz=yz+xy\Leftrightarrow xz=xy\Rightarrow z=y\) (3)

Từ (1) ; (2) ; (3) \(\Rightarrow x=y=z\) (đpcm)

26 tháng 8 2018

với x=y=z khác 0 và a,b,c khác nhau là 1 số bất kỳ khác 0 thì (1) thỏa mãn và (2) không thỏa mãn

=> Không thể CM

26 tháng 8 2018

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-zx}=\frac{c}{z^2-xy}\) (*)

\(\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-zx\right).\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-zx\right).\left(z^2-xy\right)}\)

\(=\frac{a^2-bc}{x^4-3x^2yz+xy^3+xz^3}=\frac{a^2-bc}{x.\left(x^3-3xyz+y^3+z^3\right)}\)

\(\Rightarrow\frac{a^2-bc}{x}=\frac{a^2}{\left(x^2-yz\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Làm tương tự như trên. ta có:

\(\frac{b^2-ca}{y}=\frac{b^2}{\left(y^2-zx\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

\(\frac{c^2-ab}{z}=\frac{c^2}{\left(z^2-xy\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Từ (*) \(\Rightarrow\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\left(đpcm\right)\)

20 tháng 4 2018

\(\ge\)0 nhá

22 tháng 4 2018

Ta có: \(x-y+z=0\)
    \(\Rightarrow\left(x-y+z\right)^2=0 \)
  \(\Rightarrow\left(x-y+z\right).\left(x-y+z\right)=0\)
   \(\Rightarrow x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=0\)
   \(\Rightarrow x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=0\)
  \(\Rightarrow x^2+y^2+z^2=xy+xy+yz+yz-xz-xz\)
   \(\Rightarrow x^2+y^2+z^2=2xy+2yz-2xz\)
   \(\Rightarrow x^2+y^2-z^2=2\left(xy+yz-xz\right)\)
Mà: \(x^2+y^2-z^2\ge0\)
\(\Rightarrow2\left(xy+yz-xz\right)\ge0\)
\(\Rightarrow xy+yz-xz\ge0\)(đpcm)
   Vậy: \(xy+yz-xz\ge0\)
   

5 tháng 8 2017

Ta có: \(a+b+c=1 \)

\(\Leftrightarrow(a+b+c)^2=1 \)

\(\Leftrightarrow ab+bc+ca=0 (1) \)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{(x+y+z)}{\left(a+b+c\right)}=x+y+z\)

\(\Leftrightarrow x=a\left(x+y+z\right)\)

\(\Leftrightarrow y=b.\left(x+y+z\right)\)

\(\Leftrightarrow z=c.\left(x+y+z\right)\)

\(\Rightarrow xy+yz+zx=ab.\left(x+y+z\right)^2+bc.\left(x+y+z\right)^2+ca.\left(x+y+z\right)^2\)

\(\Leftrightarrow xy+yz+zx=\left(ab+bc+ca\right).\left(x+y+z\right)^2\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra: \(xy+yz+zx=0\)