K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

19 tháng 3 2017

20n+16n-3n-1  \(⋮\)321

vì 323=17.19

Ta thấy : 20n+16n-3n-1

            =(20n-1) + (16n-3n)

             20n-1\(⋮\)19 với n chẵn

 \(\Rightarrow\)(20n-1) + ( 16-3n)\(⋮\)19      (1)

Mặt khác : 20n+16n-3n-1

              =( 20n-3n) + ( 16n-1)

               20n-3n\(⋮\)17 với n chẵn 

               16n-1  \(⋮\)17 với n chẵn 

\(\Rightarrow\)(20n-3n) + ( 16n-1) \(⋮\)17     (2)

Từ (1) và (2) \(\Rightarrow\)20n+16n-3n-1 \(⋮\)17\(\times\)19

\(\Rightarrow\)20n+16n-3n-1 \(⋮\)323 ( đpcm)

18 tháng 7 2017

Ta có: A =n^12-n^8-n^4+1 
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2 
=(n^4+1)[(n^2+1)(n^2-1)]^2 
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1) 
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64 
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8 
Do đó : A chia hết cho 64*8=512

18 tháng 7 2017

a, Ta có m là số nguyên chẵn

=> m có dạng 2k 

=> m3+20m=(2k)3+20.2k

=8k3+40k=8k(k2+5)

Cần chứng minh k(k2+5) chia hết cho 6

Nếu k chẵn => k(k2+5) chia hết cho 2

Nếu k lẻ =>k2 lẻ=> k2+5 chẵn=> k(k2+5) chia hết cho 2

Nếu k chia hết cho 3 thì k(k2+5) chia hết cho 3

Nếu k chia 3 dư 1 hoặc dư 2 thì 

k có dạng 3k+1 hoặc 3k+2

=> (3k+1)[(3k+1)2+5)]

=(3k+1)(9k2+6k+6) Vì 9k2+6k+6 chia hết cho 3 

=> k(k2+5) chia hết cho 3

Nếu  k chia 3 dư 2 

=> k có dạng 3k +2

=> k(k2+5)=(3k+2)[(3k+2)2+5]

=(3k+2)(9k2+12k+9)

Vì 9k2+12k +9 chia hết cho 3

=> k(k^2+5) chia hết cho 3

=> k(k2+5) chia hết cho 6

=> 8k(k2+5) chia hết cho 48

=> dpcm