Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-c)^2+(a-b)^2+(b-c)^2=0
=>a=b=c
c: \(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-b)^2+(a-c)^2+(b-c)^2=0
=>a=b=c
a) a2 + b2 + c2 = ab + bc + ac
\(\Rightarrow\) a2 + b2 + c2 - ab - bc - ac = 0
\(\Rightarrow\) 2(a2 + b2 + c2 - ab - bc - ac) = 0
\(\Rightarrow\) a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0
\(\Rightarrow\) (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)
\(\Rightarrow\) a = b = c
b) (a + b + c)2 = 3(a2 + b2 + c2)
a2 + b2 + c2 + 2ab + 2bc + 2ac = 3a2 + 3b2 + 3c2
\(\Rightarrow\) 2ab + 2ac + 2bc = 2a2 + 2b2 + 2c2
\(\Rightarrow\) 0 = a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac
Hay: a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0
\(\Rightarrow\)(a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)
\(\Rightarrow\) a = b = c
c) (a + b + c)2 = 3(ab + bc + ac)
a2 + b2 + c2 + 2ab + 2ac + 2bc = 3ab + 3bc + 3ac
\(\Rightarrow\) a2 + b2 + c2 = ab + ac + bc2
\(\Rightarrow\) 2(a2 + b2 + c2) = 2(ab + ac + bc)
\(\Rightarrow\) 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac
\(\Rightarrow\) a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0
\(\Rightarrow\) (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)
\(\Rightarrow\) a = b = c
CHÚC BN HOK TỐT(nhớ tik mik nha)
a)Cmr : Nếu : a2 + b2 + c2 = ab + bc + ac thì a = b =c
Bài làm
2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
=> ( a2 - 2ab + b2) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2) =0
= > ( a - b)2 + ( a - c)2 + ( b -c)2 = 0
Vậy :
* ( a - b)2 = 0
* ( a - c)2 =0
* (b -c)2 =0
Suy ra :
* a =b
* a =c
* b = c
Suy ra : a = b =c ( đpcm)
a) Ta có: a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0
<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0
<=>(a-b)2+(b-c)2+(a-c)2=0
=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c
=>a=b=c
Bài 2:
a+b+c+d=0
nên b+c=-(a+d)
\(a^3+b^3+c^3+d^3\)
\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)
\(=\left(b+c\right)\left(3ad-3bc\right)\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
p giúp mk câu b đk k? Mk đọc mãi cũng không hiểu lắm câu a thì làm đk r