Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết sai rồi n!=1.2.3...n
Ta có \(\frac{1}{n!}=\frac{\left(n-1\right)!}{n!.\left(n-1\right)!}< \frac{\left(n-1\right).\left(n-1\right)!}{n!.\left(n-1\right)!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
=> \(\frac{1}{2!}+\frac{1}{3!}+...\frac{1}{2020!}< \frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+....+\frac{1}{2018!}-\frac{1}{2019!}+\frac{1}{2019!}-\frac{1}{2020!}\)
=> \(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2020!}< 1-\frac{1}{2020!}< 1\)(ĐPCM)
\(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2020}}\)
=> \(2A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2019}}\)
=> 2A - A = \(\frac{1}{2}-\frac{1}{2^{2020}}< \frac{1}{2}< 1\)
=> A < 1.
\(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{2020!}\)
Ta có : \(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}=\frac{1}{1.2.3}< \frac{1}{2.3}\)
\(\frac{1}{4!}=\frac{1}{1.2.3.4}< \frac{1}{3.4}\)
...
\(\frac{1}{2020!}=\frac{1}{1.2.3...2020}< \frac{1}{2019.2020}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A< 1-\frac{1}{2020}< 1\)
\(\Rightarrow\)A<1
Vậy A<1.
Mik làm giống bạn đs ó
P/s ; ko chắc