Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right).2n}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{4n}\)
Vì \(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}.\)
\(\Rightarrow A< \frac{1}{4}\left(đpcm\right)\left(n\in N;n\ge2\right).\)
Chúc bạn học tốt!
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\\ \frac{1}{3^2}< \frac{1}{2\cdot3}\\ \frac{1}{4^2}< \frac{1}{3\cdot4}\\ ...\\ \frac{1}{n^2}< \frac{1}{\left(n-1\right)\cdot n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)\cdot n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\left(\text{với }n\in N;n\ge2\right)\)
\(7^6+7^5-7^4\)
\(=7^4\cdot7^2+7^5\cdot7-7^4\)
\(=7^4\cdot\left(7^2+7-1\right)\)
\(=7^4\cdot55\)
\(=7^4\cdot5\cdot11⋮11\left(đpcm\right)\)
\(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)\)
\(=7^4.55⋮11\)
\(=>7^6+7^5-7^4⋮11\)
\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)
=>2n-1=25=>n-1=5=>n=5+1=6
vậy......
~~~~~~~~~~~~~~~
a, 5-1x 25n = 125 d, 25 < 5n:5 < 625
5-1 x 52n = 53 52 < 5n:5 < 54
=> -1+2n=3 => n=4
=>2n = 3--1
=>2n=4
=>n =2
a,\(5^{-1}\times25^n=125 \)
= \(\frac{1}{5}\times25^n=125\)
= \(25^n=125\div\frac{1}{5}\)
= \(25^n=625\)
= \(25^n=25^2\)
\(\Rightarrow n=2\)
1/ \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10}\)
\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017\cdot\frac{1}{10}\)
\(\Rightarrow\frac{2017}{a+b}+\frac{2017}{b+c}+\frac{2017}{c+a}=201,7\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=201,7\) (vì a + b + c = 2017)
\(\Rightarrow\left(\frac{c}{a+b}+1\right)+\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)=201,7\)
\(\Rightarrow M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3=201,7\)
\(\Rightarrow M=198,7\)
2/
a, 3n+2 - 2n+2 + 3n + 2n
= 3n.32 + 3n - 2n.22 + 2n
= 3n.10 - 2n.5
= 3n.10 - 2n-1.10
= 10(3n - 2n-1 ) ⋮ 10
Bài 2:
a: =>50x+50=0
=>50x=-50
=>x=-1
b: \(\Leftrightarrow5^{2x-1}=5^3\)
=>2x-1=3
=>2x=4
=>x=2
c: \(\Leftrightarrow3^{x-1}+6\cdot3^{x-1}=7\cdot3^6\)
=>3^x-1=3^6
=>x-1=6
=>x=7
a) Qui nạp :
\(A=10^n+18n-1\)
+) Xét \(n=1\Leftrightarrow A=27⋮27\)
+) Xét \(n=2\Leftrightarrow A=135⋮27\)
Giả sử biểu thức đúng với \(n=k\)
Khi đó ta có : \(A=10^k+18k-1⋮27\)(*)
Để kết thúc bài toán ta cần chứng minh biểu thức đúng với \(n=k+1\)
Xét \(A=10^{k+1}+18\left(k+1\right)-1\)
\(A=10^k\cdot10+18k+18-1\)
\(A=10\left(10^k+18k-1\right)-162k+27\)
\(A=10\left(10^k+18k-1\right)-27\left(6k-1\right)\)
Theo (*) ta có \(10\left(10^k+18k-1\right)⋮27\)
Mặt khác \(-27\left(6k-1\right)⋮27\)
\(\Rightarrow A=10\left(10^k+18k-1\right)-27\left(6k-1\right)⋮27\)
Ta có đpcm
b) \(n^3-n=n\left(n-1\right)\left(n+1\right)\)
Ta có \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số tự nhiên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)⋮2\\n\left(n-1\right)\left(n+1\right)⋮3\\\left(2;3\right)=1\end{matrix}\right.\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮2\cdot3=6\)( đpcm )
bạn có thể giải thik đc ko