Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3+32+33+34+....+3100Cmr A chia hết cho 100
Đề sai rùi
vỡi~~~~~~~~~
Đặt A=3+32+33+34+.....+3100
A=(3+32)+(33+34)+.....+(399+3100) (có 50 số hạng)
A=3.(1+12)+3.(13+14)+.....+3.(199.1100)
A=3.2+3.2+....+3.2
A=6+6+6...+6 (50 số)
A=60.50=300 =>300 chia hết cho 100
Vậy A chia hết cho 100
\(A=3+3^2+3^3+3^4+...+3^{100}\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
\(A=3\left(1+3+9+27\right)+...+3^{98}\left(1+3+9+27\right)\)
\(A=3.40+....+3^{98}.40\)
\(A=40\left(3+3^5+3^9+3^{13}+...+3^{98}\right)\)
\(\Rightarrow A⋮40\)
A = 3 + 3^2 + 3^3 + 3^4 + ,,, + 3^100
A =(3 + 3^2 + 3^3 + 3^4) + (3^5 + 3^6 +3 ^7 + 3^8) + ...+ (3^97 + 3^98 + 3^99 + 3^100)
A = 3.(1 + 3 + 3^2 + 3^3) + 3^5.(1 + 3 + 3^2 + 3^3) + ... + 3^97.(1 + 3 + 3^2 + 3^3)
A = 3.40 + 3^5.40 + ... + 3^97.40 = 40.(3 + 3^5 + ... + 3^97)
=> A chia hết cho 40.
\(A=3+3^2+3^3+.......+3^{100}\)
\(\Leftrightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+.........+\left(3^{99}+3^{100}\right)\)
\(\Leftrightarrow A=3\left(1+3\right)+3^3\left(1+3\right)+..........+3^{99}\left(1+3\right)\)
\(\Leftrightarrow A=3.4+3^3.4+...........+3^{99}.4\)
\(\Leftrightarrow A=4\left(3+3^3+.........+3^{99}\right)⋮4\left(đpcm\right)\)
\(A=3+3^2+3^3+...+3^{100}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(A=1\left(3+3^2\right)+3^2\left(3+3^2\right)+....+3^{98}\left(3+3^2\right)\)
\(A=1.12+3^2.12+...+3^{98}.12\)
\(A=\left(1+3^2+...+3^{98}\right).12\)
\(A=\left(1+3^2+....+3^{98}\right).3.4⋮4\left(đpcm\right)\)