Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B
Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B
ta có :
`1^3` \(⋮\) `1`
\(2^3⋮2\)
\(3^3⋮3\)
.................
\(100^3⋮100\)
`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)
vậy `A` \(⋮\)`B`
a) \(3^{10}+3^{11}+3^{12}\)
⇔ \(3^{10}\left(1+3+3^2\right)\)
⇔ \(3^{10}.13\)
⇒ \(3^{10}.13\) chia hết cho 13
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{x^4}{a}+\frac{y^4}{b}\right)(a+b)\geq (x^2+y^2)^2=1\)
\(\Leftrightarrow \frac{x^4}{a}+\frac{y^4}{b}\geq \frac{1}{a+b}\)
Dấu bằng xảy ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\). Do đó \(\frac{x^2}{a}=\frac{y^2}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow \frac{x^{2006}}{a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{(a+b)^{1003}}\)
\(\Rightarrow \frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{y^{1003}}=\frac{2}{(a+b)^{1003}}\)
Do đó ta có đpcm.
Bài này phải quy đồng rồi áp dụng chớ chớ lỡ a+b=0 thì sao chị :3
Ta có: B=1+2+3+...+100
=(1+100)+(2+99)+...+(50+51)
\(=101\cdot50\)
Ta có: \(A=1^3+2^3+3^3+...+100^3\)
\(=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(50^3+51^3\right)\)
\(=\left(1+100\right)\cdot\left(1-100+100^2\right)+\left(2+99\right)\left(4-198+99^2\right)+...+\left(50+51\right)\left(2500+50\cdot51+51^2\right)\)
\(=101\cdot\left(1-100+100^2+4-198+99^2+...+50^2-50\cdot51+51^2\right)⋮101\)
Ta có: \(A=1^3+2^3+3^3+...+100^3\)
\(=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...50^3+100^3\)
\(=\left(1+99\right)\left(1-99+99^2\right)+\left(2+98\right)\cdot\left(4-196+98^2\right)+...+50^3+50^3\cdot2^3⋮50\)
mà (50,101)=1
nên \(A⋮50\cdot101=B\)
hay \(A⋮B\)(đpcm)