K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

giả sử \(10^n+18n-1⋮27\)

\(\Rightarrow10^n-1+18n⋮27\)

\(\Rightarrow999...9\) (n số 9) \(+18n⋮27\)

\(\Rightarrow9\left(111...1+2n\right)⋮27\)

\(\Rightarrow111...1+2n⋮3\)

ta có tổng các số của 111...1 (n số 1) bằng n và 2n có tổng các số là số dư khi 2n : 9. gọi số dư đó là \(k\Rightarrow2n=3x+2k\) \(\left(x\in N\right)\)

ta có: 111...1 = 3y + k \(\left(x\in N\right)\)

\(\Rightarrow2n+111...1=3\left(x+y\right)+3k=3\left(x+y+k\right)\)

\(\Rightarrow2n+111...1⋮3\)

\(\Rightarrow10^n+18n-9⋮27\) (đpcm)

8 tháng 9 2019

Lớp 12 ?!

Ta có:

7=3k+1\(\Rightarrow\)7\(^{n+1}\)=3k+1 với mọi n thuộc N

8=3k+2\(\Rightarrow\)8\(^{2n+1}\)=3k+2 với mọi n thuộc N

\(\Rightarrow\)7\(^{n+1}\)+8\(^{2n+1}\)=(3k+1)+(3k+2)=3k+3\(⋮\)3(đpcm)

28 tháng 2 2020

Ai giải giúp mình với ạ

30 tháng 12 2016

Bài 1:

a) \(3x-\left(5-17\right)=2x+7\)

\(\Rightarrow3x+12=2x+7\)

\(\Rightarrow x+5=0\)

\(\Rightarrow x=-5\)

Vậy \(x=-5\)

b) \(10-\left(5-x\right)=30+\left(2x-3\right)\)

\(\Rightarrow10-5+x=30+2x-3\)

\(\Rightarrow5+x=27+2x\)

\(\Rightarrow x+22=0\)

\(\Rightarrow x=-22\)

Vậy \(x=-22\)

30 tháng 12 2016

Bài 2:

Giải:
a) Ta có: \(15⋮n-2\)

\(\Rightarrow n-2\in\left\{-1;1;-15;15\right\}\)

+) \(n-2=-1\Rightarrow n=1\)

+) \(n-2=1\Rightarrow n=3\)

+) \(n-2=-15\Rightarrow n=-13\)

+) \(n-2=15\Rightarrow n=17\)

Vậy \(n\in\left\{1;3;-13;-17\right\}\)

b) Ta có: \(n-2⋮n+1\)

\(\Rightarrow\left(n+1\right)-3⋮n+1\)

\(\Rightarrow3⋮n+1\)

\(\Rightarrow n+1\in\left\{1;-1;3;-3\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=3\Rightarrow n=2\)

+) \(n+1=-3\Rightarrow n=-4\)

Vậy \(n\in\left\{0;2;-2;-4\right\}\)

c) Ta có: \(5n+3⋮n+1\)

\(\Rightarrow\left(5n+5\right)-2⋮n+1\)

\(\Rightarrow5\left(n+1\right)-2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\in\left\{1;-1;2;-2\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=2\Rightarrow n=1\)

+) \(n+1=-2\Rightarrow n=-3\)

Vậy \(n\in\left\{0;-2;1;-3\right\}\)

d) Ta có: \(n^2+n+7⋮n+1\)

\(\Rightarrow n\left(n+1\right)+7⋮n+1\)

\(\Rightarrow7⋮n+1\)

\(\Rightarrow n+1\in\left\{1;-1;7;-7\right\}\)

+) \(n+1=1\Rightarrow n=0\) ( t/m )

+) \(n+1=-1\Rightarrow n=-2\) ( t/m )

+) \(n+1=7\Rightarrow n=6\) ( t/m )

+) \(n+1=-7\Rightarrow n=-8\) ( không t/m )

Vậy \(n\in\left\{0;-2;6\right\}\)

NV
6 tháng 8 2020

- Với \(a=b=0\) thỏa mãn

- Với \(a=0;b\ne0\) hàm bậc 3 ko tồn tại min max (ko thỏa mãn)

- Với \(a< 0\Rightarrow\lim\limits_{x\rightarrow\infty}f\left(x\right)=-\infty\Rightarrow\) ko tồn tại min f(x) (loại)

\(\Rightarrow a>0\)

\(f\left(0\right)=-3\Rightarrow\) để hàm thỏa mãn yêu cầu thì \(f\left(x\right)\ge-3;\forall x\ne0\)

\(\Leftrightarrow ax^4+bx^3+x^2\ge0\Leftrightarrow x^2\left(ax^2+bx+1\right)\ge0\)

\(\Leftrightarrow ax^2+bx+1\ge0\)

\(\Leftrightarrow\Delta=b^2-4a\le0\Leftrightarrow b^2\le4a\)

- Với \(a=1\Rightarrow-2\le b\le2\) có 5 cặp

- Với \(a=2\Rightarrow-2\le b\le2\) có 5 cặp

- Với \(a=3\Rightarrow-3\le b\le3\) có 7 cặp

- Với \(a=4\Rightarrow-4\le b\le4\) có 9 cặp

Vậy tổng cộng có 27 cặp a;b thỏa mãn

các bạn giải giúp mình mấy câu bất đẳng thức này với 1) tìm GTLN a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\) b)y=\(\dfrac{x}{x^2+2}\) x>0 2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\) 3)cho x,y>0 thỏa mãn x+y=2 . CM a)xy(x2+y2)\(\le2\) b)x3y3(x3+y3)\(\le2\) 4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\) tìm GTLN A= (3-x)(4-y)(2x+3y) 5)...
Đọc tiếp

các bạn giải giúp mình mấy câu bất đẳng thức này với

1) tìm GTLN

a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)

b)y=\(\dfrac{x}{x^2+2}\) x>0

2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)

3)cho x,y>0 thỏa mãn x+y=2 . CM

a)xy(x2+y2)\(\le2\)

b)x3y3(x3+y3)\(\le2\)

4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)

tìm GTLN A= (3-x)(4-y)(2x+3y)

5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1

tìm GTLN của P=x2y2z2u

6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)

8)cho 3 số dương a,b,c có tổng bằng 3 .

tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi

3
17 tháng 2 2019

\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)

Tương tự cho các số còn lại rồi cộng vào sẽ được

\(S\le\dfrac{3}{2}\)

Dấu "=" khi a=b=c=1

Vậy

17 tháng 2 2019

\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)

\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)

Cmtt rồi cộng vào ta đc đpcm

Dấu "=" khi x = y = z = 1/3

14 tháng 6 2020

re = 24367896567673646687434678597-0=-09///////09

16 tháng 6 2020

/ab144256655455456788457864322-835

Bài 1:

a) Ta có: \(\left(x+5\right)^2=100\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=10\\x+5=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-15\end{matrix}\right.\)

Vậy: \(x\in\left\{5;-15\right\}\)

b) Ta có: \(\left(2x-4\right)^2=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\)

hay x=2

Vậy: x=2

c) Ta có: \(\left(x-1\right)^3=27\)

\(\Leftrightarrow x-1=3\)

hay x=4

Vậy: x=4

29 tháng 4 2020

Cảm ơn anh nhiều ạ,chiều nay hok trực tuyến mà ko lm đc,may mà có anh gp em