Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=8^8\left(8^2-8-1\right)=8^8\cdot55⋮5\)
b: \(=7^4\left(7^2+7+1\right)=7^4\cdot57⋮̸11\)
a) \(7^8+7^9+7^{10}\)
\(=7^8\left(1+7+7^2\right)\)
\(=7^8.57⋮57\)
b) \(10^{10}-10^9-10^8=10^8\left(10^2-10-1\right)\)
\(=10^8⋮89\)
a.
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{22}\times\left(3^6-3^5-3^4\right)=3^{22}\times405\)
\(\Rightarrow81^7-27^9-9^{13}⋮405\)
b.
\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\times\left(2^4-2\right)=2^{17}\times14\)
\(\Rightarrow8^7-2^{18}⋮14\)
\(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{26}.5\)
\(=3^{22}.3^4.5\)
\(=3^{22}.81.5\)
\(=405.3^{22}\)
\(\Rightarrow405.3^{26}⋮405\)
\(\Rightarrow81^7-27^9-9^{13}⋮405\)
a) \(7^8+7^9+7^{10}=7^8\left(1+7+7^2\right)=7^8.57⋮57\)(đpcm)
b)\(10^{10}-10^9-10^8=10^8\left(10^2-10-1\right)=10^8.89⋮89\)(đpcm)
c)\(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8.55⋮55\)(đpcm)
d)Chưa nghĩ ra.
a, Đặt A = 810 - 89 - 88 = 88.82 - 88.81 - 88.1 = 88.(82 - 81 -1) = 88.55
Vì 55 chia hết cho 55 nên 88 chia hết cho 55 hay A chia hết cho 55.
b, Đặt B = 76 + 75 - 74 = 74.72 + 74.71 + 74.1 = 74.(72 + 71 - 1) = 74.55
Vì 55 chia hết cho 55 nên 74.55 chia hết cho 55 hay B chia hết cho 55.
c, Đặt C = 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 ( Đến dây thì tương tự như phần a bạn nhé)
d, Phần này cũng tương tự phần a.
\(e)\) \(81^7-27^9-9^{13}\)
\(=\)\(\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=\)\(3^{28}-3^{27}-3^{26}\)
\(=\)\(3^{24}\left(3^4-3^3-3^2\right)\)
\(=\)\(3^{24}\left(81-27-9\right)\)
\(=\)\(3^{24}.45⋮45\)
Vậy \(81^7-27^9-9^{13}⋮45\)
\(g)\) \(10^9+10^8+10^7\)
\(=\)\(10^6\left(10^3+10^2+10\right)\)
\(=\)\(10^6\left(1000+100+10\right)\)
\(=\)\(10^6.1110\)
\(=10^6.2.555⋮555\)
Vậy \(10^9+10^8+10^7⋮555\)
Chúc bạn học tốt ~
a) ta có : \(\overline{ab}\)+\(\overline{ba}\) = (10a+b)+(10b+a)= 11a+11b \(⋮\)11
b) tương tự
a) Có: \(3+3^2+3^3+3^4+...+3^{99}\\ =\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\\ =\left(3+3^2+3^3\right)+3^3\left(3+3^2+3^3\right)+...+3^{97}\left(3+3^2+3^3\right)\\ =39+3^3\cdot39+...+3^{97}\cdot39\\ =13\cdot3+3^3\cdot13\cdot3+...+3^{97}\cdot13\cdot3\\ =13\left(3+3^4+...+3^{98}\right)⋮13\left(đpcm\right)\)
b) Có: \(81^7-27^9-9^{13}\\ =\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\\ =3^{28}-3^{27}-3^{26}\\ =3^{26}\left(3^2-3-1\right)\\ =3^{24}\cdot\left(3^2\cdot5\right)\\ =3^{24}\cdot45⋮45\left(đpcm\right)\)
c) Có: \(24^{54}\cdot54^{24}\cdot2^{10}\\ =\left(2^3\cdot3\right)^{54}\cdot\left(2\cdot3^3\right)^{24}\cdot2^{10}\\ =2^{162}\cdot3^{54}\cdot2^{24}\cdot3^{72}\cdot2^{10}\\ =2^{196}\cdot3^{126}\\ =2^7\cdot\left(2^{189}\cdot3^{126}\right)\\ =2^7\cdot\left[\left(2^3\right)^{63}\cdot\left(3^2\right)^{63}\right]\\ =2^7\left(8^{63}\cdot9^{63}\right)\\ =2^7\cdot72^{63}⋮72^{63}\left(đpcm\right)\)
a) ta có: 3 + 32 + 33 + 34 + ... + 399
= (3 + 32 + 33) + (34 + 35 +36) + ... + (397 + 398 + 399)
= 3(1 + 3 + 32) + 34(1 + 3 + 3) + ... + 396(1 + 3 + 3)
= 3.13 + 34.13 + ... + 396.13
= 13(3 + 34 + ... + 396) ⋮ 13
vậy (3 + 32 + 33 + 34 + ... + 399) ⋮ 13
b) ta có: 817 - 279 - 913
= (34)7 - (33)9 - (32)13
= 328 - 327 - 326
= 326(32 - 3 - 1)
= 326 . 5 = 324 (9.5) = 324 . 45 ⋮ 45
Vậy (817 - 279 - 913) ⋮ 45
c) ta có: 2454.5424.210
= (23.3)54 . (2.33)24 . 210
= 2162 . 354 . 224 . 372 . 210
= 2196 . 3126
= (2193.3124).(23.32)
= (2193.3124).72 ⋮ 72
vậy (2454.5424.210) ⋮ 72
Câu b) đề sai phải ko bạn