Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\cdot3\dfrac{1}{4}+\left(-\dfrac{7}{6}\right)\cdot x-1\dfrac{2}{3}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{3}{4}x-\dfrac{7}{6}x-\dfrac{2}{3}=\dfrac{5}{12}\)
\(\Leftrightarrow9x-14x-8=5\)
\(\Leftrightarrow-5x-8=5\)
\(\Leftrightarrow-5x=5+8\)
\(\Leftrightarrow-5x=13\)
\(\Rightarrow x=-\dfrac{13}{5}\)
Vậy \(x=-\dfrac{13}{5}\)
b) \(5\dfrac{8}{17}:x+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Rightarrow5\dfrac{8}{17}:x+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\left(đk:x\ne0\right)\)
\(\Leftrightarrow\dfrac{93}{17}\cdot\dfrac{1}{x}+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{93}{17x}+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{93}{17x}+2x-\dfrac{3}{4}=-\dfrac{7}{4}\left(đk:2x-\dfrac{3}{4}\ge0\right)\\\dfrac{93}{17x}-\left(2x-\dfrac{3}{4}\right)=-\dfrac{7}{4}\left(đk:2x-\dfrac{3}{4}< 0\right)\end{matrix}\right.\)
đến đây bạn giải tiếp nhé
c) \(\left(x+\dfrac{1}{2}\right)\cdot\left(\dfrac{2}{3}-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0-\dfrac{1}{2}\\2x=0+\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{2}{3}:2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{1}{2};x_2=\dfrac{1}{3}\)
Từ 2015 đường thẳng phân biệt cùng đi qua điểm O => Tạo được 4030 tia chung gốc.
Mà mỗi tia sẽ tạo với các tia còn lại 4029 góc => Có 4030.4029( góc)
Mà ở trong 4030.4029 góc thì có các góc lặp lại lần thứ 2 => Từ 2015 đường thẳng sẽ có số góc là: 4030.4029:2=2015.4029(góc)
Mà có 2015 góc bẹt => Có số góc khác góc bẹt là: 2015.4029-2015=2015.4028(góc)
=> Có số cặp góc bằng nhau được tạo thành(không kể góc bẹt) là: 2015.4028:2=2015.2014=4058210(góc)
Nguyễn Huy Tú
soyeon_Tiểubàng giải
Nguyễn Đình Dũng
Nguyễn Huy Thắng
Trần Quỳnh Mai
Silver bullet
Nguyễn Như Nam
Nguyễn Anh Duy
Hoàng Lê Bảo Ngọc
Võ Đông Anh Tuấn
hepl me
3:
BPT =>\(\left\{{}\begin{matrix}\dfrac{x^2-x+m}{3x^2-2x+1}>2\\\dfrac{x^2-x+m}{3x^2-2x+7}< =7\end{matrix}\right.\)
=>x^2-x+m>6x^2-4x+2 và x^2-x+m<=21x^2-14x+49
=>-5x^2+3x+m-2>0(1) và -20x^2+13x+m-49<=0
(1): Δ=3^2-4*(-5)(m-2)
=9+20(m-2)=20m-31
Để (1) luôn đúng với mọi x thì 20m-31<0 và -5>0(vô lý)
=>\(m\in\varnothing\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 2\\x>\dfrac{9}{2}\end{matrix}\right.\\-\dfrac{1}{3}< x< 7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}< x< 2\\\dfrac{9}{2}< x< 7\end{matrix}\right.\)
Hay \(S=\left(-\dfrac{1}{3};2\right);\left(\dfrac{9}{2};7\right)\)
d.
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le-\dfrac{11}{5}\\x\ge7\end{matrix}\right.\\-\dfrac{1}{2}< x< 3\end{matrix}\right.\) \(\Rightarrow x\in\varnothing\) hay BPT vô nghiệm