Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có S=5+52+53+...+52004 =(5+52)+(53+54)+...+(52003+52004)
S=5.(1+5)+53.(1+5)+...+52003.(1+5)
S=5.6+53.6+..+52003+6
S=6.(5+53+...+52003)
Vì 6 chia hết cho 6
=> S chia hết cho 6
b)S=5.(1+5+52)+...+598.(1+5+52)
S= 5.31+...+598.31
S=31.(5+...+598)
vì 31 chia hết cho 31
=> S chia hết cho 31
c)S=5.(1+5+52+53)+...+597.(1+5+52+53)
S=5.156+...+597.156
S= 156.(5+...+597)
vì 156 chia hết cho 156
=> S chia hết cho 156
\(S=5+5^2+5^3+...+5^{2004}\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+...+5^{2003}\right)\)
\(=6\left(5+5^3+...+5^{2003}\right)\)
Vậy S chia hết cho 6.
\(S=5\left(1+5+5^2\right)+...+5^{2002}\left(1+5+5^2\right)\)
\(=\left(1+5+5^2\right)\left(5+...+5^{2002}\right)\)
\(=31\left(5+...+5^{2002}\right)\)
Vậy S chia hết cho 31.
\(S=5\left(1+5+5^2+5^3\right)+...+5^{2001}\left(1+5+5^2+5^3\right)\)
\(=\left(1+5+5^2+5^3\right)\left(5+...+5^{2001}\right)\)
\(=156\left(5+...+5^{2001}\right)\)
Vậy S chia hết cho 156.
34n = (...1) luôn có tận cùng là 1
=> 34n+1 = 24n . 3 = (...1) . 3 = (...3) luôn có tận cùng là 3
=> 34n+1 + 2 = (...3) + 2 = (...5) luôn có tận cùng là 5 nên chia hết cho 5
Do \(2A+B=5x^2+y^2+1>0\) nên \(A,B\) không cùng đồng thời nhận giá trị âm được!
(x-5)x-5-(x-5)x+3=0
<=>(x-5)x-5-(x-5)x-5.(x-5)8=0
<=>(x-5)x-5.[1-(x-5)8]=0
<=>(x-5)x-5=0 hoặc 1-(x-5)8=0
<=>x-5=0 hoặc (x-5)8=1
<=>x=5 hoặc x-5=1 hoặc x-5=-1
<=>x=5 hoặc x=6 hoặc x=4
Vậy............................
(x-5)x-5-(x-5)x+3=0
<=> (x-5)x / (x-5)5 - (x-5)x(x-5)3 = 0
<=> (x-5)x [ 1 / (x-5)5 ] - (x-5)x(x-5)3 = 0
<=> (x-5)x[ (1/(x-5)5)-(x-5)3 ] = 0
<=> (1/(x-5)5)-(x-5)3 = 0
<=> 1/(x-5)5 = (x-5)3
<=> (x-5)3(x-5)5 = 1
<=> (x-5)8 = 1
<=> x-5 =1 và x-5 = -1
* x-5 = 1 <=> x = 6
* x-5 = -1 <=> x = 4
Lời giải:
Ta có $3^m+5^n\equiv 3^m+1\equiv 0\pmod 4$ nên $3^m\equiv (-1)^m\equiv -1\pmod 4$ nên $m$ lẻ
Đặt $m=2k+1$ ( $k\in\mathbb{N}$) thì $3^m=3^{2k+1}\equiv 3\pmod 8$
$\Rightarrow 5^n\equiv 5\pmod 8$. Xét tính chẵn, lẻ ( đặt $n=2t,2t+1$) suy ra $n$ lẻ
Do đó $\Rightarrow 3^n+5^m\equiv (-5)^n+(-3)^m=-(5^n+3^m)\equiv 0\pmod 8$
Ta có đpcm
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
dễ ẹc :
5+52+53+...+559+560
=(5+54)+(52+55)+(53+56)+...+(557+560)
=5+(1+53)+52+(1+53)+...+557+(1+53)
= 126 .(5+52+...+557) chia hết cho 126
(đ.p.c.m)
chia hết chô 126