K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

Ta có\(452^{80}=\left(452^4\right)^{20}\)

Do\(452^4\)tận cùng 6\(\Rightarrow452^{80}\)tận cùng 6

Lại có\(151^{65}\)tận cùng1

\(\Rightarrow452^{80}-151^{65}\)tận cùng 5

\(\Rightarrow452^{80}-151^{65}⋮5\)

Vậy\(452^{80}-151^{65}⋮5\)

9 tháng 10 2017

thanks nhìu

1 tháng 1 2016

Ta có: S=5+5^2+...+5^2004

=>S=(5+5^2+5^3+5^4)+...+(5^2001+5^2002+5^2003+5^2004)

=>S=(5+5^2+5^3+5^4)+...+5^2000.(5+5^2+5^3+5^4)

=>S=780+...+5^2000.780

=>S=(1+...+5^2000).780

=>S=(1+...+5^2000).12.65 chia hết cho 65

=>S chia hết cho 65

=>ĐPCM

20 tháng 7 2015

\(\frac{a}{b}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{a}{b}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{a}{b}=1-\frac{1}{100}=\frac{99}{100}\)

Do đó a = 99k và b = 100k (k \(\in\) N*)

Còn chứng minh a chia hết cho 151 thì bạn xem lại đề, còn tùy vào k thì a mới chia hết cho 151.

18 tháng 3 2016

MÀY LÀ CHÓ

16 tháng 7 2015

ờ 1/2x3 nữa       

\(\frac{a}{b}=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=\left(\frac{1}{51}+\frac{1}{100}\right)+...+\left(\frac{1}{75}+\frac{1}{76}\right)=\frac{151}{100.51}+...+\frac{151}{75.76}\)

\(=151.\left(\frac{1}{51.100}+...+\frac{1}{75.76}\right)\)

gọi \(\frac{1}{51.100}+...+\frac{1}{75.76}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}.151=\frac{151c}{d}\)

=>a chia hết cho 151

=>đpcm

 

14 tháng 6 2021

\(a,\)\(x+80⋮x+3\)

\(\Rightarrow\)\(\left(x+3\right)+77⋮x+3\)

Vì \(x+3⋮x+3\)

nên \(77⋮x+3\)

\(\Rightarrow\)\(x+3\inƯ\left(77\right)\)

\(\Rightarrow\)\(x+3\in\left\{1;-1;7;-7;11;-11;77;-77\right\}\)

\(\Rightarrow\)\(x\in\left\{-2;-4;4;-10;8;-14;74;-80\right\}\)

mà \(x\in N\)nên \(x\in\left\{4;8;74\right\}\)

\(b,\)\(2x+65⋮x+1\)

\(\Rightarrow\)\(2\left(x+1\right)+63⋮x+1\)

Vì \(x+1⋮x+1\)

nên \(2\left(x+1\right)⋮x+1\)

Do đó, \(63⋮x+1\)

\(\Rightarrow\)\(x+1\inƯ\left(63\right)\)

\(\Rightarrow\)\(x+1\in\left\{1;-1;3;-3;7;-7;9;-9;21;-21;63;-63\right\}\)

\(\Rightarrow\)\(x\in\left\{0;-2;2;-4;6;-8;8;-10;20;-22;62;-64\right\}\)

mà \(x\in N\)nên \(x\in\left\{0;2;6;8;20;62\right\}\)

9 tháng 10 2019

câu a nhóm 4 số lại(mũ liên tiếp)

câu b nhóm 4 số lại(mũ liên tiếp)

9 tháng 10 2019

bạn ơi, bạn có thể giải chi tiết đc ko!rồi mình cho.