Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4^{39}+4^{40}+4^{41}=4^{38}.\left(4+4^2+4^3\right)=4^{38}.84⋮28\left(Vì:84⋮28\right)\)
1/ Do trong 6 số nguyên liên tiếp bất kì luôn có 3 số chẵn gồm 2 số chia hết cho 2 và ít nhất 1 số chia hết cho 4 nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 (1)
Do trong 6 số nguyên liên tiếp luôn có 2 số chia hết cho 3 => tích 6 số nguyên liên tiếp luôn chia hết cho 9 (2)
Do trong 6 số nguyên liên tiếp luôn có ít nhất 1 số chia hết cho 5 => tích 6 số nguyên liên tiếp luôn chia hết cho 5 (3)
Từ (1); (2); (3) do 16; 9; 5 nguyên tố cùng nhau từng đôi một nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 x 9 x 5 hay 720 (đpcm)
2/ Do trong 3 số chẵn liên tiếp luôn có 2 số chia hết cho 1 và ít nhất 1 số chia hết cho 4 => tích của chúng chia hết cho 16
Do trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 3 nên tích của chúng chia hết cho 3
=> tích 3 số chẵn liên tiếp chia hết cho 2; 4; 6; 8; 12; 16; 24; 48
Ta có công thức tổng của dãy số hình thành bởi lũy thừa của một số là:
S = a(1 - r^n)/(1 - r),
trong đó a là số hạng đầu tiên, r là công bội và n là số lượng số hạng.
Áp dụng công thức trên vào bài toán của chúng ta, ta có:
a = 5, r = 5 và n = 99.
Thay các giá trị vào, ta có:
S = 5(1 - 5^99)/(1 - 5).
Tuy nhiên, để xác định xem S có chia hết cho 31 hay không, ta cần tính S modulo 31.
Ta biết rằng nếu a ≡ b (mod m) và c ≡ d (mod m), thì a + c ≡ b + d (mod m) và a * c ≡ b * d (mod m).
Áp dụng tính chất này vào công thức trên, ta có:
S ≡ 5(1 - 5^99)/(1 - 5) ≡ 5(1 - 5^99)/(-4) ≡ -5(1 - 5^99)/4 (mod 31).
Tiếp theo, ta cần xác định giá trị của 5^99 modulo 31.
Ta biết rằng nếu a ≡ b (mod m), thì a^n ≡ b^n (mod m).
Áp dụng tính chất này vào bài toán của chúng ta, ta có:
5^99 ≡ (5^3)^33 ≡ 125^33 ≡ 4^33 (mod 31).
Tiếp tục, ta có thể tính giá trị của 4^33 modulo 31 bằng cách sử dụng phép lũy thừa modulo:
4^1 ≡ 4 (mod 31), 4^2 ≡ 16 (mod 31), 4^3 ≡ 2 (mod 31), 4^4 ≡ 8 (mod 31), 4^5 ≡ 1 (mod 31).
Do đó, ta có:
4^33 ≡ 4^5 * 4^4 * 4^4 * 4^4 * 4^4 * 4^4 * 4 ≡ 1 * 8 * 8 * 8 * 8 * 8 * 4 ≡ 4096 ≡ 1 (mod 31).
Vậy, chúng ta có:
S ≡ -5(1 - 5^99)/4 ≡ -5(1 - 1)/4 ≡ 0 (mod 31).
Kết quả là tổng A chia hết cho 31.
Có \(10^{2001}=10000...000\)( 2001 chữ số 0)
Có \(10^{2001}+2=1000...002\)(2000 chữ số 0)
Tổng các chữ số là :
1 + 0 + 0 + ... + 0 + 2 = 3 chia hết cho 3
Vậy ................
Giả sử: abc+ ( 2a+3b+c) chia hết cho 7, ta có:
abc+ ( 2a+3b+c)= a.100+b.10+c+2a+3b+c
= a.98+7.b
Vì a.98 chia hết cho 7 ( 98 chia hết cho 7 ), 7.b chia hết cho 7 => a.98+7.b chia hết cho 7
=> abc+ ( 2a+3b+c) chia hết cho 7
Mà theo đầu bài abc chia hết cho 7 => 2a+3b+c chia hết cho 7 (theo tính chất chia hết của một tổng)
A,Theo bài ra ta có:
abc=100a+10b+c
Lấy abc-2a+3b+c ta được : 98a+7b
Suy ra : 98a+7b=7(28a+b) chia hết cho 7
Vì abc chia hết cho 7 nên ta có thể suy ra 2a+3b+c chia hết cho 7
B, Theo bài ra ta có:
ab=10a+b
Lấy ab - 3a+b ta được : 7a chia hết cho7
Vì ab chia hết cho 7 nên ta suy ra 3a+b chia hết cho 7
Nếu muốn chứng minh ngược lại thì phân tích các số ab , abc thành tổng của các số 2a+3b+c , 3a+b
ta thấy 1978 ko chia hết cho 11
78 ko chia hết cho 11 suy ra a chia hết cho 11
2012 ko chia het cho 11
10 ko chia het cho 11
suy ra chắc chắn b chia hết cho 11 ( ĐPCM)
k nha
\(1978a+2012b-78a-10b=1900a+2002\)
ma 2002b chia het cho 11
=>1900a chia het cho 11 nhung 1900 khong chia het cho 11
=>a chia het cho 11 (1)
ta co 78a+10b chia het cho 11 ma 78a chia het cho 11
=>10b chia het cho 11 ma 10 khong chia het cho 11
=>b chia het cho 11 (2)
tu (1) va (2) =>a+b chia het cho 11
4 ^39 + 4^40 +4^41
=4 ^38.4 + 4^38 .4^2+4^38.4^3
= 4^38 .(4 +16+64)
= 4^38 .84
=> chia hết cho 42...
tick nha