Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\forall n\)
3n+2-2n+2+3n-2n
=(3n+2+3n)+(-2n+2-2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10.(3n-2n-1) chia hết cho 10
Vậy 3n+2-2n+2+3n-2n chia hết cho 10
\(N=3^{n+2}-2^{n+2}+3^n-2^n\)
\(\Rightarrow N=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(\Rightarrow N=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(\Rightarrow N=\left[3^n\left(3^2+1\right)\right]-\left[2^{n-1}\left(2^3+2\right)\right]\)
\(\Rightarrow N=3^n.10-2^{n-1}.10\)
\(\Rightarrow N=\left(3^n-2^{n-1}\right).10⋮10\)
\(\Rightarrow N⋮10\left(đpcm\right)\)
Vậy \(N⋮10\)
Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
Ta có 3n+2-2n+2+3n-2n
= 3n.9-2n.4+3n-2n
= 3n(9+1)-2n(4+1)
= 3n.10-2n.5=3n.10-2n-1.10
Nhận thấy 3n.10 chia hết cho 10 với mọi số nguyên dương n; 2n-1.10 chia hết cho 10 với mọi số nguyên dương n
=> 3n+2-2n+2+3n-2n chia hết cho 10 với mọi số nguyên dương n
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)
\(=3^n.3^2+3^n-\left(2^n.2^2+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=\left(3^n-2^{n-1}\right).10\) chia hết cho 10
Bảo nè,phải sửa lại đề n\(\in\)N* vì n=0 thì \(2^{0-1}=2^{-1}=\frac{1}{2}\) nên \(\left(3^n-2^{n-1}\right).10\) không chia hết cho 10
1) 3^1994+4^1993-3^1992
= 3^1992.(9+3-1)=3^1992.11 chia hết cho 11
=> 3^1994+3^1993-3^1992 chia hết cho 11
C1: Đặt tính chia ra:
\(\left(n^3-3n^2-1\right):\left(n^2+n+1\right)\)
C2: Dùng quy nạp
Giả sử n=k, chứng minh đúng với k+1
đề có đúng không vậy bạn ?
có bạn à