Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm.
Trl :
\(\frac{1}{9}.27^n=3^{n+2}\)
\(3^{-2}.\left(3^3\right)^n=3^{n+2}\)
\(3^{-2}.3^{3n}=3^{n+2}\)
\(\Rightarrow-2+3n=n+2\)
\(\Rightarrow3n=n+4\)
\(\Rightarrow2n=4\)\(\Rightarrow n=2\)
Hok tốt
Trl :
\(\frac{1}{9}3^4.3^n=3^7\)
\(3^{-2}.3^4.3^n=3^7\)
\(\Rightarrow-2+4+n=7\)
\(\Rightarrow2+n=7\)
\(\Rightarrow n=7-2\)
\(\Rightarrow n=5\)
Hok tốt !
a)Ta có
\(m^2+105^n+2^{105}=m^2+\left(...5\right)+2^{104}.2\)
\(m^2+\left(...5\right)+\left(...6\right).2\)
\(m^2+\left(...5\right)+\left(...2\right)\)
\(m^2+\left(...7\right)\)
Ta có
m2 luôn có tận cùng là 1;4;5;6;9
\(\Rightarrow m^2+\left(...7\right)\ne\left(...0\right)\)
=> m2+(...7) không chia hết cho 10
Hay \(m^2+105^n+2^{105}\)không chia hết cho 10
Câu b tương tự
Ta có : n2 + 4n + 3
= n2 + 3n + n + 3
= n(n + 3) + (n + 3)
= (n + 1)(n + 3)
Vậy nếu n là số thẻ thì n sẽ có dạng 2k + 1 (k là số tự nhiên)
Khi đó : n2 + 4n + 3 = (n + 1)(n + 3) = (2k + 1 + 1)(2k + 1 + 3) = (2k + 2)(2k + 4) = 2(k + 1)2(k + 2) = 4(k + 1)(k + 2)
Vì k + 1 và k + 2 là hai số tự nhiên liên tiếp nên sẽ có 1 số chẵn nên : 4(k + 1)(k + 2) chia hết cho 8 (với mọi n lẻ)
\(\Rightarrow\left(3^{n+2}+3^n\right)+\left(-2^{n+2}-2^n\right)\)
\(\Rightarrow3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(\Rightarrow3^n.10-2^n.5\)
\(\Rightarrow3^n.10-2^{n-1}.10\)
\(\Rightarrow10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n+2^n⋮10\)
# Kukad'z Lee'z
hok bít