Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5n + 11 chia hết cho 3n + 4
=> 3.(5n + 11) chia hết cho 3n + 4
=> 15n + 33 chia hết cho 3n + 4
=> 15n + 20 + 13 chia hết cho 3n + 4
=> 5.(3n + 4) + 13 chia hết cho 3n + 4
Do 5.(3n + 4) chia hết cho 3n + 4 => 13 chia hết cho 3n + 4
Mà 3n + 4 chia 3 dư 1 => \(3n+4\in\left\{1;13\right\}\)
=> \(3n\in\left\{-3;9\right\}\)
=> \(n\in\left\{-1;3\right\}\)
b) 2n2 + 3n - 11 chia hết cho n + 2
=> 2n2 + 4n - n - 2 - 9 chia hết cho n + 2
=> 2n.(n + 2) - (n + 2) - 9 chia hết cho n + 2
=> (n + 2).(2n - 1) - 9 chia hết cho n + 2
Do (n + 2).(2n - 1) chia hết cho n + 2 => 9 chia hết cho n + 2
=> \(n+2\in\left\{1;-1;3;-3;9;-9\right\}\)
=> \(n\in\left\{-1;-3;1;-5;7;-11\right\}\)
Câu b bn ý chép sai đề 1 chút, mk đã hỏi bn ý và sửa lại nên lm như trên
5n+11 chia hết cho 3n+4
=>15n+33 chia hết cho 3n+4
mà 15n+20 chia hết cho 3n+4
=>13 chia hết cho 3n+4
=>3n+4=13,1,-1,-13
=>3n=9,-3,-5,-16
=>n=3,-1
Bạn xem lại đề. Thay $n=1$ thì biểu thức không chia hết cho 7 nhé.
Chứng minh với mọi số nguyên dương n thì
3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10
Giải
3^n + 2 – 2^n + 2 + 3^n – 2^n
= 3^n+2 + 3^n – 2^n + 2 - 2^n
= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )
= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )
= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )
= 3^n . 10 – 2^n . 5
= 3^n.10 – 2^n -1.10
= 10.( 3^n – 2^n-1)
Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10
Ta có : \(2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
=> \(-5n^2-5n=-5\left(n^2+n\right)\)Như vậy luôn chia hết cho 5 với mọi n
3n+2 -2n+2+3n-2n
= 3n.9-2n.4+3n-2n
=3n.10-2n.5
Xét 3n.10 chia hết cho 10
2n.5 chia hết cho 2 và 5 nên chia hết cho 10
=> 3n.10-2n.5 chia hết cho 10 =>đpm
Ta có: 3n+2 - 2n+2 +3n - 2n = \(\left(3^{n+2}+3^n\right)+\left(-2^{n+2}-2^n\right)\)
= \(3^n\left(3^2+1\right)-2\left(2^2+1\right)\)
= \(3^n.10-2^n.5\)
= \(3^n.10-2^{n-1}.2.5\)
= \(3^n.10-2^{n-1}.10\) = \(10.\left(3^n-2^{n-1}\right)\) chia hết cho 10