K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

Đề sai rồi. Mình tìm được x,y để nó nhỏ hơn 0 dễ ợt.Vd:x=1,y=0....

31 tháng 10 2018

Trả lời hộ mình với, mình k cho

26 tháng 5 2021

\(P=2x\left(x+y-1\right)+y^2+1\)

\(=2x^2+2xy-2x+y^2+1\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)\)

\(=\left(x+y\right)^2+\left(x-1\right)^2\ge0\)

=> P ≥ 0

25 tháng 6 2017

Bài 1:

a, \(x^2-6x+10=x^2-3x-3x+9+1\)

\(=x.\left(x-3\right)-3.\left(x-3\right)+1=\left(x-3\right)^2+1\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy................... (đpcm)

b, \(4x-x^2-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-2x-2x+4+1\right)\)

\(=-\left[x.\left(x-2\right)-2.\left(x-2\right)+1\right]\)

\(=-\left[\left(x-2\right)^2+1\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)

\(\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1< 0\)

Vậy............... (đpcm)

Chúc bạn học tốt!!!

25 tháng 6 2017

Bài 2:

a, \(P=x^2-2x+5\)

\(P=x^2-x-x+1+4=\left(x-1\right)^2+4\)

Với mọi giá trị của \(x\in R\)ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Hay \(P\ge4\) với mọi giá trị của \(x\in R\).

Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)

\(\Rightarrow x=1\)

Vậy........

b, Xem lại đề.

c, \(M=x^2+y^2-x+6y+10\)

\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của \(x;y\in R\)ta có:

\(\left(x-\dfrac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x;y\in R\).

Để \(M=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy............

Chúc bạn học tốt!!!

25 tháng 6 2017

Bài 1 :

a) \(x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1>0\) với mọi \(x\) (vì \(\left(x-3\right)^2\ge0\) )

\(\rightarrowđpcm\)

b) \(4x-x^2-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1< 1\) (vì \(-\left(x-2\right)^2< 0\) với mọi x)

\(\rightarrowđpcm\)

25 tháng 6 2017

Bài 2:

a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Ta có: \(P=\left(x-1\right)^2+4\ge4\)

Dấu " = " khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(MIN_P=4\) khi x = 1

c, \(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy \(MIN_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3\)

8 tháng 3 2015

vì x^4 là mũ chẳn 

suy ra x^4=số dương

2x^2..........cũng như vâyj

vậy x^4+2x^2+1>0

8 tháng 3 2015

vì \(x^4\ge0\);\(x^2\ge0\);\(1>0\)(với mọi x)

Cộng vế với vế ta có

\(x^4+x^2+1>0\)

14 tháng 4 2020

CMR : \(x^4y^6\)luôn nhận gt không âm với với mọi x, y

Ta dễ dàng nhận thấy : x4 và y6 đều có số mũ là số chẵn

=> x và y luôn nhận giá trị dương

=> \(x^4y^6\)luôn nhận giá trị không âm với mọi x và y 

14 tháng 4 2020

ta thấy xvà y6 có số mũ là số chẵn

mà bất kì lũy thừa nào có số chẵn luôn ra kết quả là một số dương

=> xvà y6 có kết quả là số dương

=> x4yko nhận gt âm

(tui ko giỏi văn nên bài có thể hơi khó hiểu sr trc)

# k nha # :))