Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=(\sin ^2a)^3+(\cos ^2a)^3+3\sin ^2a\cos ^2a(\sin ^2a+\cos ^2a)\)
\(=(\sin ^2a+\cos ^2a)^3=1^3=1\)
\(B=(\cos ^2a+\sin ^2a-2\sin a\cos a)+(\cos ^2a+\sin ^2a+2\sin a\cos a)\)
\(=(1-2\sin a\cos a)+(1+2\sin a\cos a)=2\)
\(C=\frac{(\cos ^2a+\sin ^2a-2\sin a\cos a)-(\cos ^2a+\sin ^2a+2\sin a\cos a)}{\sin a\cos a}=\frac{(1-2\sin a\cos a)-(1+2\sin a\cos a)}{\sin a\cos a}\)
$=\frac{-4\sin a\cos a}{\sin a\cos a}=-4$
\(\frac{sin^2\alpha}{cos\alpha.\left(1+\frac{sin\alpha}{cos\alpha}\right)}-\frac{cos^2\alpha}{sin\alpha.\left(1+\frac{cos\alpha}{sin\alpha}\right)}=\frac{sin^2\alpha}{cos\alpha+sin\alpha}-\frac{cos^2\alpha}{sin\alpha+cos\alpha}=\frac{\left(sin\alpha+cos\alpha\right).\left(sin\alpha-cos\alpha\right)}{sin\alpha+cos\alpha}=sin\alpha-cos\alpha\)
Đề sai em
Đề đúng: \(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\)
\(A=\sin^6\alpha+cos^6\alpha+3\sin^2\alpha\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right).\)vì\(\sin^2\alpha+\cos^2\alpha=1\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)
\(B=2\left(\cos^2\alpha+\sin^2\alpha\right)=2.1=2\)
\(C=\frac{-4\cos\alpha\sin\alpha}{\sin\alpha\cos\alpha}=-4\)
\(2\left(\sin a-\cos a\right)^2-\left(\sin a+\cos a\right)^2+6\sin a\cos a\)\(=2\left(1-2\sin a\cos a\right)-\left(1+2\sin a\cos a\right)+6\sin a\cos a=1\)
Vậy với mọi giá trị a thì biểu thức không đổi