Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(a-11b+3c⋮17\Rightarrow2\left(a-11b+3c\right)⋮17\)
\(\Rightarrow2a-22b+6c⋮17\Rightarrow\left(2a-5b+6c\right)-17b⋮17\)
Vì\(17b⋮17\Rightarrow2a-5b+3c⋮17\)
Vì \(a-11b+3c\) chia hết cho 17 => \(2\left(a-11b+3c\right)\)chia hết cho 17 => \(2a-22b+6c\)
Ta có: \(\left(2a-22b+6c\right)-\left(2a-5b+6c\right)=17b\)chia hết cho 17
Mà 2a - 22b + 6c chia hết cho 17 nên => 2a - 5b + 6c chia hết cho 17
Vậy 2a - 5b + 6c chia hết cho 17.
\(2a+3b⋮17\Leftrightarrow2a+3b+17\left(2a+b\right)⋮17\Leftrightarrow36a+20b=4\left(9a+5b\right)⋮17\)
\(\text{mà 17 và 4 là 2 số nguyên tố cùng nhau nên:}9a+5b⋮17\)
\(\text{vậy:}2a+3b⋮17\Leftrightarrow9a+5b⋮17\)
\(2a+3b⋮17\Rightarrow8a+12b⋮17\)
\(\Rightarrow8a+9b+9a+5b\)
\(=17a+17b=17\left(a+b\right)⋮17\)
mà \(8a+12b⋮17\Rightarrow9a+5b⋮17\)
và ngược lại nếu \(9a+5b⋮17\Leftrightarrow2a+3b⋮17\)
Ta có \(a-11b+3c⋮17\Rightarrow2a-22b+6c⋮17\)
Ta có \(17b⋮17\)
Nên \(2a-22b+6c+17b=2a-5b+6c⋮17\left(dpcm\right)\)
Ta có:\(\left(2a-5b+6c\right)+15\left(a-11b+3c\right)=17a-170b+51c⋮17\)
Mà \(15\left(a-11b+3c\right)⋮17\Rightarrow2a-5b+6c⋮17\left(đpcm\right)\)
Vì \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow\frac{x}{a}=\frac{4x}{4a}=\frac{2y}{2b}=\frac{5y}{5b}=\frac{3z}{3c}=\frac{6z}{6c}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x}{a}=\frac{4x}{4a}=\frac{2y}{2b}=\frac{5y}{5b}=\frac{3z}{3c}=\frac{6z}{6c}=\frac{x+2y-3z}{a+2b-3c}=\frac{4x-5y+6z}{4a-5b+6c}\)
\(\Rightarrow\frac{x+2y-3z}{4x-5y+6z}=\frac{a+2b-3c}{4a-5b+6c}\left(đpcm\right)\)
a-11b+3c\(⋮\)7
=> 2a-22b+6c\(⋮\)7
2a-22b+6c - (2a-5b+6c) = -17b\(⋮\)7
=> đpcm