Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Tìm x, biết :
\(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\) \(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+\left(x-2\right)\left(2\left(x+2\right)-5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2\left(x+2\right)-5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\\left(x+2\right)^2+2>0\end{matrix}\right.\Rightarrow x=2\)
1.=(x-2)(x 2+2x+7)+2(x-2)(x+2)-5(x-2) = 0
=>(x-2)(x 2+2x+7+2x+4-5) = 0
=>(x-2)(x 2+4x+6) = 0
Mà x 2+4x+6 (E Z)
=> x 2+4x+6 > 0
Vậy (x-2)=0 => x = 2
a) 29 - 1 = 83 - 1 = (8 - 1)(82+8+1) = 7*73 chia hết cho 73.
b) 56 - 104 = 54*(52 - 24) = 54 *(25 - 16) = 54 *9 chia hết cho 9.
29 đồng dư với 1(mod 73)
=>29-1 đồng dư với 0(mod 73)
=>29-1 chia hết cho 73
=>đpcm
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
=(2^3)^3-1=(2^3-1)(2^6+2^3+1)=7(64+8+1)=7.73