K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

bài ny mà ko làm đc ngu quá

30 tháng 4 2018

:3 Số 'm' phải là số lẻ nhé cậu 

Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)

Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)

Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)

Do m lẻ nên \(S⋮2018=1009.2⋮1009\)

Vậy \(S⋮1009\)

Mặt khác ta lại có 

\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\)   \(⋮2017\)

=> \(S⋮2017\)

Mà (1009,2017) = 1 

=> \(S⋮2017.1009=......\)

21 tháng 11 2017

Đặt A(x) = x-2 = 0

\(\Rightarrow x=2\)

\(\Rightarrow\) nghiệm của A(x) là 2

Thay x = 2 vào f(x) ta được

\(\Rightarrow f\left(2\right)=\left(4-6+1\right)^{31}-\left(4-8+5\right)^{30}+2\)

\(\Rightarrow f\left(2\right)=\left(-1\right)^{31}-1^{30}+2\)

\(\Rightarrow f\left(2\right)=-2+2\)

\(\Rightarrow f\left(2\right)=0\)

\(\Rightarrow2\) là nghiệm của \(f\left(x\right)\)

Mà theo định lí Bê - đu ta có :

Đa thức f(x) chia hết cho x - a khi và chỉ khi f(a) = 0 ( tức là khi và chỉ khi a là nghiệm của đa thức)

\(\Rightarrow f\left(x\right)=\left(x^2-3x+1\right)^{31}-\left(x^2-4x+5\right)^{30}+2⋮x-2\)

22 tháng 11 2017

lop 8

29 tháng 5 2016

bài này mà là tón 8 á?mik nghĩ là toán 6

2 tháng 8 2021

a) \(3^{10}+3^{11}+3^{12}\)

⇔ \(3^{10}\left(1+3+3^2\right)\)

⇔  \(3^{10}.13\) 

⇒   \(3^{10}.13\)  chia hết cho 13