K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

(2^1+2^2) + (2^3+2^4) + ............+ (2^99+2^100) = 2.(1+2) + 2^3.(1+2) + ..........+ 2^99.(1+2)

= 2.3 + 2^3.3 + ............+ 2^99.3 = 3.(2+2^3+..........+2^99) * 3

vậy 2^1+2^2+2^3+............+2^100*3

(dấu * là dấu chia hết nha)           tick nha bạn !

18 tháng 11 2015

a) 2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3

(2^1 + 2^2) + (2^3+2^4)+.....+(2^99+2^100)

2.(1+2)+2^3.(1+2)+....+2^99(1+2)

(2+2^3+...+2^99).(1+2)

(2+2^3+...+2^99).3

Vì 3 chia hết cho 3 nên (2+2^3+...+2^99).3 chia hết cho 3

hay  2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3

23 tháng 10 2021

\(3,1+5^2+5^4+...+5^{26}\)

\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)

\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)

\(=26+5^4.26+...+5^{24}.26\)

\(=26\left(5^4+...+5^{24}\right)\)

Vì  \(26⋮26\)

\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)

\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)

23 tháng 10 2021

\(4,1+2^2+2^4+...+2^{100}\)

\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)

\(=21+2^6.21...+2^{98}.21\)

\(=21\left(2^6+...+2^{98}\right)\)

Có : \(21\left(2^6+...+2^{98}\right)⋮21\)

\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)

https://olm.vn/hoi-dap/detail/90506436447.html

3 tháng 11 2015

câu 1 ở trong câu hỏi tương tự

câu 2 là 7200

tick nhé