Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3
(2^1 + 2^2) + (2^3+2^4)+.....+(2^99+2^100)
2.(1+2)+2^3.(1+2)+....+2^99(1+2)
(2+2^3+...+2^99).(1+2)
(2+2^3+...+2^99).3
Vì 3 chia hết cho 3 nên (2+2^3+...+2^99).3 chia hết cho 3
hay 2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3
\(3,1+5^2+5^4+...+5^{26}\)
\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)
\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)
\(=26+5^4.26+...+5^{24}.26\)
\(=26\left(5^4+...+5^{24}\right)\)
Vì \(26⋮26\)
\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)
\(4,1+2^2+2^4+...+2^{100}\)
\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)
\(=21+2^6.21...+2^{98}.21\)
\(=21\left(2^6+...+2^{98}\right)\)
Có : \(21\left(2^6+...+2^{98}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)
(2^1+2^2) + (2^3+2^4) + ............+ (2^99+2^100) = 2.(1+2) + 2^3.(1+2) + ..........+ 2^99.(1+2)
= 2.3 + 2^3.3 + ............+ 2^99.3 = 3.(2+2^3+..........+2^99) * 3
vậy 2^1+2^2+2^3+............+2^100*3
(dấu * là dấu chia hết nha) tick nha bạn !