Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $\text{B(2021)}$ là bội của $2021$
$2022^n-1=(2021+1)^n-1=\text{B(2021)}+1-1=\text{B(2021)}$
Mà $2021=43\times 47$ không phải số nguyên tố
$\Rightarrow 2022^n-1$ không là số nguyên tố
$\Rightarrow 2022^n-1, 2022^n+1$ không thể đồng thời là số nguyên tố.
\(\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(8^2-576:3^2\right)\)
\(=\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(64-576:3^2\right)\)
\(=\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(64-64\right)\)
\(=\left(1^1+2^2+3^3+4^4+2022^{2022}\right).0\)
\(=0\)
Ta có 3m + 2022
Nếu m = 0 ⇒ 30 + 2022 = 2023
Mà số chính phương không có chữ số tận cùng là 3 ( loại )
Nếu m ≥ 1 ⇒ 3m + 2022 chia 3 dư 2 ( 3m ⋮ 3; 2022 chia 3 dư 2 )
Mà số chính phương chia 3 chỉ dư 0 hoặc 1 ( loại )
Vậy không có số tự nhiên nào thỏa mãn 3m + 2022 là số chính phương
Lời giải:
Với $m=0$ thì $3^0+2022=2023$ không là scp (loại)
Với $m=1$ thì $3^m+2022=2025$ là scp (chọn)
Vơi $m\geq 2$ thì $3^m+2022\vdots 3$ do $3^m\vdots 3, 2022\vdots 3$ và $3^m+2022\not\vdots 9$ do $3^m\vdots 9$ và $2022\not\vdots 9$
Một số chia hết cho 3 nhưng không chia hết cho 9 nên $3^m+2022$ không phải scp với mọi $m\geq 2$
Vậy $m=1$ là đáp án duy nhất.
`Answer:`
Gọi \(ƯC\left(2n+7;5n+17\right)=d\left(d\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}2n+7⋮d\\5n+17⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5\left(2n+7\right)⋮d\\2\left(5n+17\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}10n+35⋮d\\10n+34⋮d\end{cases}}\)
Lập hiệu: \(\left(10n+35\right)-\left(10n+34\right)\)
\(=10n+35-10n-34\)
\(=\left(10n-10n\right)+\left(35-34\right)\)
\(=1\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
Vậy phân số `\frac{2n+7}{5n+17}` tối giản với mọi `n\inNN`