K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

giả sử các số đó là x;y với x>1 ; y>1 và không làm giảm tính tổng quát, ta có thể đặt: \(x\le y\)

Theo đề bài, ta có: \(\left(x+1\right)⋮y\) và \(\left(y+1\right)⋮x\)

Do vậy: \(\left[\left(x+1\right)\left(y+1\right)\right]⋮xy\)

\(\left(xy+x+y+1\right)⋮xy\Rightarrow\left(x+y+1\right)⋮xy\)

Hay x+y+1 = p.xy với p thuộc N

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=p\)

Vì \(x\ge1;y\ge1\) Nên rõ ràng là: \(0< \frac{1}{x}+\frac{1}{y}+\frac{1}{xy}\le1+1+1=3\)

Vậy p chỉ có thể nhận một trong các giá trị 1;2;3

- Với p = 3 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=3\Rightarrow\left(1;1\right)\)

- Với p = 2 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\) => Phương trình vô nghiệm

- Với  p =1 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\Rightarrow\left(2;3\right)\)

Vậy có 3 cặp số thỏa mãn yêu cầu: (1;1) ; (2;3) ; (3;2)

P/s: Không chắc lắm. Nếu còn nhiều sai sót, mong các anh/chị, thầy cô sửa cho em

24 tháng 6 2018

Trời đất, bạn MMS giỏi ghê. Thế mà mình nghĩ mãi không ra. Cảm ơn bạn nhiều

6 tháng 3 2018

Ta có: \(E=36^n+19^n-2^n\cdot2\)

Mặt khác: \(36\equiv19\equiv2\)(mod 17)

Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)

Vậy .................

18 tháng 12 2016

bt trên sẽ là  (a4n)+ 3 . a4n  - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)

mặt khác vì a là số tự nhiên , a không chia hết cho 5

=> a4n = (a2n) là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)

 nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5

nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5

 Vậy bt trên chia hết cho 5

20 tháng 6 2019

BẠN HỌC LỚP 8B THCS PHAN BỘI CHÂU TỨ KỲ ĐÚNG KO

25 tháng 9 2019

Hướng dẫn:

+) Với n = 7k  ; k thuộc N

\(n^2+2n+3=\left(7k\right)^2+2.7k+3=7.A+3\)không chia hết cho 7

+) n= 7k +1

\(n^2+2n+3=\left(7k+1\right)^2+2.\left(7k+1\right)+3=7.A+\left(1+2+3\right)=7.B+6\)không chia hết cho 7

+) n = 7k+ 2...

+) n = 7k+3...

+) n= 7k + 4...

+) n= 7k+5...

+) n = 7k + 6 

\(n^2+2n+3=\left(7k+6\right)^2+2.\left(7k+6\right)+3=7.G+\left(6^2+2.6+3\right)=7.G+51\)không chia hết cho 7

Vậy \(n^2+2n+3\)không chia hết cho 7 vs mọi n thuộc N

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6