K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

đề sai
 

19 tháng 3 2019

đề đúng rồi

18 tháng 12 2019

2. Tìm x:

( x - 3 )2 - x + 3 = 0

=> x2 - 6x + 9 - x + 3 = 0

=> x2 - 7x + 12 = 0

=> ( x2 - 3x ) + ( 4x - 12 ) = 0

=> x.(x - 3) + 4.(x - 3) = 0

=> ( x - 3 ).( x + 4 ) = 0

=> x - 3 = 0 => x = 3

     x + 4 = 0 => x = -4

Trl:

1.

a. \(75^2+150\text{.}25+25^2\)

\(=75^2+2\text{.}75\text{.}25+25^2\)

\(=\left(75+25\right)^2\)

\(=100^2\)

\(=10000\)

b. \(2019^2-2019.19-19^2-19.1981\)

(Đề bài có sai ko vậy???)~ hoặc lak do mk ngu quá k bt lm

2. \(\left(\text{x}-3\right)^2-\text{x}+3=0\)

\(\text{x}^2-6\text{x}+9-\text{x}+3=0\)

\(\text{x}^2-7\text{x}+12=0\)

\(\text{x}^2-3\text{x}-4\text{x}+12=0\)

\(\text{x}\left(\text{x}-3\right)-4\left(\text{x}-3\right)=0\)

\(\left(\text{x}-3\right)\left(\text{x}-4\right)=0\)

\(\orbr{\begin{cases}\text{x}-3=0\\\text{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\text{x}=3\\\text{x}=4\end{cases}}}\)

Vậy ....

#HuyềnAnh#

18 tháng 1 2022

heo dõi mk dc k

18 tháng 1 2022

giúp mình đi rồi theo dõi=)

24 tháng 12 2019

Ta có \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
\(\Rightarrow M=\frac{a^{2019}}{b^{2019}}+\frac{b^{2019}}{c^{2019}}+\frac{c^{2019}}{a^{2019}}=\frac{a^{2019}}{a^{2019}}+\frac{b^{2019}}{b^{2019}}+\frac{c^{2019}}{c^{2019}}=1+1+1=3\)

21 tháng 7 2019

Vì \(x=2018\Rightarrow x+1=2019\)

Thay x+1=2019 vào biểu thức A  ta được :

\(A=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+x+1\)

\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+x+1\)

\(=1\)

21 tháng 7 2019

\(A=x^6-2019x^5+2018x^4-2019x^3+2019x^2-2019x+2019\)

\(=x^6-2018x^5-x^5+2018x^4+x^4-2018x^3-x^3+2018x^2+x^2\)

\(-2018x-x+2019\)

\(=x^5\left(x-2018\right)-x^4\left(x-2018\right)-x^3\left(x-2018\right)+x^2\left(x-2018\right)\)

\(+x\left(x-2018\right)-\left(x-2018\right)+1\)

= 1