Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=7^2+7^3+...+7^8.\)
\(\Rightarrow A=\left(7^2+7^3\right)+....+\left(7^7+7^8\right)\)
\(\Rightarrow A=7^2.8+....+7^7.8\)
\(\Rightarrow A=8.\left(7^2+....+7^7\right)\)
Do đó A là số chẵn ( vì mọi số nhân với 8 đều là số chẵn )
1; 73.52.54.76:(55.78)
= (73.76).(52.54) : (55.78)
= 79.56: (55.78)
= (79:78).(56:55)
= 7.5
= 35
2; 33.a7.3.a2:(34.a6)
= (33.3).(a7.a2): (34.a6)
= 34.a9: (34.a6)
= (34:34).(a9:a6)
= a3
A = \(9999^{999^{99^9}}\)
Vì 999 không chia hết cho 2 nên \(999^{99^9}\) không chia hết cho 2
Vậy \(999^{99^9}\) = 2k + 1
A = 99992k+1
A = (99992)k.9999
A = \(\overline{...1}\)k. 9999
A = \(\overline{..1}\).9999
A = \(\overline{..9}\)
B = vì 8 ⋮ 2 nên \(8^{7^{6^{5^{3^2}}}}\) ⋮ 2
Vậy B = 92k = (92)k = \(\overline{..1}\)k = \(\overline{..1}\)