Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)
\(\Leftrightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{3}\right)^3=\left(\frac{z}{4}\right)^3\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
mà x+y+z=-18
nên Áp dụng Tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{-18}{9}=-2\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x}{2}=-2\\\frac{y}{3}=-2\\\frac{z}{4}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-6\\z=-8\end{matrix}\right.\)
Vậy: (x,y,z)=(-4;-6;-8)
+) TH1: Nếu x + y + t + z ≠ 0
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{y+z+t+x+z+t+x+y+t+x+y+z}=\frac{1}{3}\)
=> 3x = y + z + t => 4x = x + y + z + t (1)
3y = x + z + t 4y = x + y + z + t (2)
3z = x + y + t 4z = x + y + z + t (3)
3t = x + y + z 4t = x + y + z + t (4)
Từ (1)(2)(3)(4) => x = y = z = t
\(\Rightarrow\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=1+1+1+1=4\)
+) TH2: Nếu x + y + z + t = 0
=> x + y = -(z + t)
y + z = -(x + t)
t + z = -(x + y)
t + x = -(y + z)
\(\Rightarrow\frac{x+y}{z+t}=\frac{y+z}{t+x}=\frac{z+t}{x+y}=\frac{t+x}{y+z}=-1\)
\(\Rightarrow\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
KL:...