K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

Bài 2 tớ nhầm nhé, là b2

9 tháng 4 2020

Ta có:

\(\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)

\(\Leftrightarrow\frac{1}{\left(k+1\right)\sqrt{k}}-2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)< 0\)

\(\Leftrightarrow\frac{1-2k-2+2\sqrt{k\left(k+1\right)}}{\sqrt{k}\left(k+1\right)}< 0\)

Lại có: \(k>0\)

\(\Rightarrow k+1>0\)

\(\Rightarrow\sqrt{k}\left(k+1\right)>0\)

\(\Rightarrow-1-2k+2\sqrt{k\left(k+1\right)}< 0\)

Áp dụng BĐT Cô-si ta có:

\(k+\left(k+1\right)\ge2\sqrt{k\left(k+1\right)}\)

\(\Leftrightarrow2k+1\ge2\sqrt{k\left(k+1\right)}\)

\(\Leftrightarrow2\sqrt{k\left(k+1\right)}-2k-1\le0\forall k>0\)

Vậy \(\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)

7 tháng 10 2018

Ta thấy: k thuộc N* nên \(\sqrt{k+1}>\sqrt{k}\)

\(\Rightarrow\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{2}{\left(2\sqrt{k+1}\right).\left(\sqrt{k+1}.\sqrt{k}\right)}< \frac{2}{\left(\sqrt{k+1}.\sqrt{k}\right).\left(\sqrt{k+1}+\sqrt{k}\right)}\)

\(=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}.\sqrt{k}\right)\left(k+1-k\right)}=2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)

\(\Rightarrow\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)(đpcm).

NV
16 tháng 9 2019

Đặt \(\sqrt{2}+1=a\Rightarrow\sqrt{2}-1=\frac{1}{a}\)

\(\Rightarrow S_k=a^k+\frac{1}{a^k}\) ; \(S_{k+1}=a^{k+1}+\frac{1}{a^{k+1}}\) ;

\(S_1=a+\frac{1}{a}=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)

\(\Rightarrow S_k.S_{k+1}=\left(a^k+\frac{1}{a^k}\right)\left(a^{k+1}+\frac{1}{a^{k+1}}\right)\)

\(=a^k.a^{k+1}+\frac{a^k}{a^{k+1}}+\frac{a^{k+1}}{a^k}+\frac{1}{a^k.a^{k+1}}\)

\(=a^{2k+1}+\frac{1}{a^{2k+1}}+a+\frac{1}{a}\)

\(=S_{2k+1}+S_1=S_{2k+1}+2\sqrt{2}\)

\(\Rightarrow S_k.S_{k+1}-S_{2k+1}=2\sqrt{2}\)

Thay \(k=2009\) vào ta được:

\(S_{2009}.S_{2010}-S_{4019}=2\sqrt{2}\) (đpcm)

17 tháng 9 2019

tại sao \(\frac{a^k}{a^k+1}\)+\(\frac{a^k+1}{a^k}\)= a + \(\frac{1}{a}\)???