\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+........+\frac{1}{64}>4\)

Ai tích m...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

1/2+1/3+1/4+...+1/63>1/31+1/31+...+1/31(62 số hạng 1/31)

hay 1/2+1/3+1/4+...+1/63>62 x 1/31

nên 1/2+1/3+1/4+...+1/63>2(dpcm)

12 tháng 3 2017

yêu cầu của đề bài là gì vậy bạn

12 tháng 3 2017

A = \(\left(\frac{1}{11}+\frac{1}{12}+.........+\frac{1}{20}\right)\)  +  \(\left(\frac{1}{21}+\frac{1}{22}+..........+\frac{1}{30}\right)\)\(\left(\frac{1}{31}+.....+\frac{1}{60}\right)\)+ ... + \(\frac{1}{70}\)

Nhận xét: 

\(\frac{1}{11}\)\(\frac{1}{12}\)+ ........  +  \(\frac{1}{20}\)\(\frac{1}{20}\)+\(\frac{1}{20}\)+........+\(\frac{1}{20}\)\(\frac{10}{20}\)>\(\frac{1}{2}\)

\(\frac{1}{21}+\frac{1}{22}+.......+\frac{1}{30}>\frac{30}{60}>\frac{1}{2}\)

\(\frac{1}{31}+......+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+.......+\frac{1}{60}>\frac{30}{60}>\frac{1}{2}\)

A > \(\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}+......+\frac{1}{70}>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}>\frac{4}{3}\)

24 tháng 4 2017

Tờ làm luôn, ko ghi đề nữa nhé

\(A=\frac{\frac{24}{12}-\frac{4}{12}+\frac{3}{12}}{\frac{24}{12}+\frac{2}{12}-\frac{3}{12}}\)

\(A=\frac{\frac{23}{12}}{\frac{23}{12}}=1\)

Vậy A=1

24 tháng 4 2017

\(A=\frac{2-\frac{1}{3}+\frac{1}{4}}{2+\frac{1}{6}-\frac{1}{4}}\)\(=\frac{2-\frac{2}{6}+\frac{2}{8}}{2+\frac{2}{12}-\frac{2}{8}}\)\(=\frac{2\left(1-\frac{1}{6}+\frac{1}{8}\right)}{-2\left(1-\frac{1}{12}+\frac{1}{8}\right)}\)\(=-1\)

13 tháng 8 2018

(: ko bít. tui giỏi tiếng anh nhưng ngu toán lắm

28 tháng 11 2018

\(a)\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x(x+3)}=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left[(\frac{1}{5}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3})\right]=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left[\frac{1}{5}-\frac{1}{x+3}\right]=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{5}{1540}=\frac{1}{308}\)

\(\Rightarrow x+3=308\Rightarrow x=305\)

\(b)x-(\frac{50x}{100}-\frac{25x}{200})=\frac{45}{4}\)

\(\Rightarrow x-(\frac{100x}{200}-\frac{25x}{200})=\frac{45}{4}\)

\(\Rightarrow x-\frac{5x}{8}=\frac{45}{4}\)

\(\Rightarrow\frac{3x}{8}=\frac{45}{4}\)

\(\Rightarrow3x=\frac{45}{4}\cdot8\)

\(\Rightarrow3x=90\Rightarrow x=30\)

\(c)1+2+3+4+...+x=820\)

Ta có : \(1+2+3+4+...+x=\frac{(1+x)\cdot x}{2}\)

Do đó : \(\frac{(1+x)\cdot x}{2}=820\)

\(\Rightarrow(1+x)\cdot x=820\cdot2\)

\(\Rightarrow(1+x)\cdot x=1640\)

\(\Rightarrow(1+x)\cdot x=40\cdot41\)

Vì x và x + 1 là hai số tự nhiên liên tiếp nên => x = 40

Chúc bạn học tốt :3

11 tháng 5 2019

Câu 2 sai đề, thử rồi

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)