Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(328+172\right)\left(328^2+328\cdot172+172^2\right)\)
\(=5000\cdot4\left(26896+328\cdot43+7396\right)⋮20000\)
b: \(=69\left(69-5\right)=69\cdot64⋮32\)
19^19+69^19
=(19+69)(19^18-19^17.69+19^16.69^2-..............................-19.69^17+69^18)
=88(19^18+................+69^18) chia hết cho 44
a,
8^5 = (2³)^5 = 2^15
<=> 2^15+2^11 = (2^11)[(2^4)+1]
= (2^11)17 chia hết 17
b,
69(69 -5) = (69).(64)
64=(32).2
<=> 69^2-69.5 là bội số của 64, mà 64 là bội số của 32, nên chia hết cho 32
c,
Ta có : 328^3 + 172^3 = ( 328 + 172 )( 328^2 - 328 . 172 + 172^2 )
= 500 . [ (2 . 191 )^2 - 382 . 4 . 43 + ( 2 . 86 )^2 ]
= 500 . [ 4 . 191^2 - 4 . 382 . 43 + 4 . 86^2 ]
= 2000 . ( 191^2 - 382 . 43 + 86^2 )
Vì 2000 chia hết cho 2000 nên 2000 . ( 191^2 - 382 . 43 + 86^2 ) chia hết cho 2000 (đpcm)
d,
Ta có a^n + b^n =(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ
19^19 + 69^19 = (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44
Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath
Tham khảo
Em tham khảo link: Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath
a)Đặt \(A=8^5+2^{11}\)
\(A=\left(2^3\right)^5+2^{11}\)
\(A=2^{15}+2^{11}\)
\(A=2^{11}\left(2^4+1\right)\)
\(A=2^{11}\cdot17⋮17\left(đpcm\right)\)
bạn Tiến dũng trương giải tào lao quá, không biết làm thì đừng cmt linh tinh nhé!
19 là số nguyên tố thì \(19^n\)làm sao chia hết cho 44 được
Giải: CHÚ Ý: mình dùng dấu = cho mod vì không gõ được
Ta có: \(19^5\)=-1 (mod 44) => \(19^{19}=\left(-1\right)^3.19^4=-37=7\left(mod44\right)\)
\(69^5=11\left(mod44\right)\Rightarrow69^{69}=1^{13}.69^4=37\left(mod44\right)\)
=> \(19^{19}+69^{69}=7+37=0\left(mod44\right)\)
vậy chia hết cho 44
Cách 2:
Ta có: \(A=69^{69}+19^{19}=\left(69^{69}+19^{69}\right)-\left(19^{69}-19^{19}\right)\)
Ta có: \(69^{69}+19^{69}⋮\left(19+69\right)\Rightarrow69^{69}+19^{69}⋮44\)
Phải CM \(19^{69}-19^{19}⋮44\), Thật vậy
\(B=19^{19}\left(19^{50}-1\right)\)
do 19 lẻ nên \(19^2=1\left(mod4\right)\)\(\Rightarrow19^{50}=1\left(mod4\right)\Rightarrow19^{50}-1⋮4\)
Có: \(19^{50}=8^{50}\left(mod11\right)\)mà
\(8^5=1\left(mod11\right)\Rightarrow8^{50}=1\left(mod11\right)\Leftrightarrow19^{50}=1\left(mod11\right)\Rightarrow19^{50}-1⋮11\)
Mà (4,11)=1
=> \(19^{69}-19^{19}⋮44\)
=> A chia hết cho 44 (ĐPCM)
(19^9) mod 44=0 suy ra 19^19 chia het cho 44
(69^6) mod 44=0 suy ra 69^69 chia het cho 44
suy ra .....19^19+69^69 chia het cho 44