Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(17^{19}+19^{17}=\left(17^{19}+1\right)+\left(19^{17}-1\right)\)
Mà \(17^{19}+1\)chia hết cho \(17+1=18\)
và \(19^{17}-1\)chia hết cho \(19-1=18\)
nên \(\left(17^{19}+1\right)+\left(19^{17}-1\right)\)chia hết cho \(18\)
Do đó, \(17^{19}+19^{17}\)chia hết cho \(18\)
a) Có: \(2^3=8\equiv1\left(mod7\right)\Rightarrow2^{51}\equiv1\left(mod7\right)\)
\(\Rightarrow2^{51}-1⋮7\left(đpcm\right)\)
b) 270 + 370 = (22)35 + (32)35 = 435 + 935
\(=\left(4+9\right).\left(4^{34}-4^{33}.9+....-4.9^{33}+9^{34}\right)\)
\(=13.\left(4^{34}-4^{33}.9+...-4.9^{33}+9^{34}\right)⋮13\left(đpcm\right)\)
phần a sai đề nha bạn
b,Ta có
\(2\equiv2\left(mod13\right)\)
\(\Rightarrow2^{12}\equiv1\left(mod13\right)\)
\(\Rightarrow2^{12.5}.2^{10}\equiv1.2^{10}\left(mod13\right)\)
\(\Rightarrow2^{60}.2^{10}\equiv1024\left(mod13\right)\)
\(\Rightarrow2^{70}\equiv10\left(mod13\right)\)\(\left(1\right)\)
Lại có:
\(3\equiv3\left(mod13\right)\)
\(\Rightarrow3^6\equiv1\left(mod13\right)\)
\(\Rightarrow3^{6.11}.3^4\equiv1.3^4\left(mod13\right)\)
\(\Rightarrow3^{66}.3^4\equiv81\left(mod13\right)\)
\(\Rightarrow3^{70}\equiv3\left(mod13\right)\)\(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow2^{70}+3^{70}\equiv13\equiv0\left(mod13\right)\)
c, Ta có
\(17\equiv-1\left(mod18\right)\)
\(\Rightarrow17^{19}\equiv-1\left(mod18\right)\)\(\left(1\right)\)
Lại có
\(19\equiv1\left(mod18\right)\)
\(\Rightarrow19^{17}\equiv1\left(mod18\right)\)\(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow17^{19}+19^{17}\equiv0\left(mod18\right)\)
\(\Rightarrow17^{19}+19^{17}⋮18\)
a) 85+211
=(23)5+211=215+211
=211(24+1)
=211.17 (chia hết cho 17 )
Vậy 85+211 chia hết cho 17
b)Ta có a^n + b^n
=(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ
19^19 + 69^19
= (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44
Phải có \(n\in N\)nữa nha.
\(A=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(B=20^n-3^n⋮20-3=17\)(n là số tự nhiên bất kì)
\(C=16^n-1^n⋮16+1=17\)(n là số tự nhiên chẵn)
\(\Rightarrow A=B+C⋮17\)(1)
\(A=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(D=20^n-1^n⋮20-1=19\)(n là số tự nhiên bất kì)
\(E=16^n-3^n⋮16+3=19\)(n là số tự nhiên chẵn)
\(\Rightarrow A=D+E⋮19\)(2)
Từ (1), (2) \(\Rightarrow A⋮17;19\)
Vậy \(20^n+16^n-3^n-1⋮17;19\)
Chúc bạn học tốt.
\(a^4-b^4\)
=\(\left(a^2\right)^2-\left(b^2\right)^2\)
=\(\left(a^2+b^2\right)\left(a^2-b^2\right)\)
=\(\left(a^2+b^2\right)\left(a+b\right)\left(a-b\right)\)
Chúc bn hok tốt !!!
bn Hiếu thiếu bước cuối nhé !
bài dễ thế này không ai làm sao thôi thì để mình làm nha hihi
\(a^4-b^4\)
\(=\left(a^2\right)^2-\left(b^2\right)^2\)
\(=\left(a^2+b^2\right)\left(a^2-b^2\right)\)
c) 17^19 + 19^17 = (17^19 + 1) + (19^17
- 1)
17^19 + 1 chia hết cho 17 + 1 = 18 và 19^17
- 1 chia hết cho 19 - 1 = 18 nên (17^19 + 1) + (19^17
- 1)
hay 17^19 + 19^17 chia hết cho 18