Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
..............
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+.....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+....+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+....+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\left(1\right)\)
Lại có :
\(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)
\(\dfrac{1}{6^2}>\dfrac{1}{6.7}\)
..............
\(\dfrac{1}{100^2}>\dfrac{1}{100.101}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+......+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+.....+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+....+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4}\)
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
Đặt: \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)
Ta có: \(\left\{{}\begin{matrix}A>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\\A< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\end{matrix}\right.\)
Vậy \(\dfrac{1}{6}< A< \dfrac{1}{4}\)
Dat A=1/5^2+1/6^2+1/7^2+............1/100^2<1/4.5+1/5.6+1/6.7+....+1/99.10=
1/4-1/5+1/5-1/6+1/6-1/7+.............1/99-1/100=
14-1/100=25/100-1/100=24/25/100=1/4(1)
A>1/5.6+1/6.7+1/7.8+....+1/100.101=
1/5-1/6+1/6-1/7+1/7-1/8 +...+1/100-1/101=
1/5-1/101>6 (2)
Tu 1 va 2 => dieu can chung minh
đặt \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=A\)
*chứng minh A<1/4
ta có:\(A<\frac{1}{4.5}+\frac{1}{5.6}+..+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\) *chứng minh A>1/6
ta có:
\(A>\frac{1}{5.6}+\frac{1}{6.7}+..+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)
từ 2 điều trên =>đpcm
mk chắc chắn đúng,hồi chiều cô mk ms cho làm
Ta có\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{101}< A< \frac{1}{4}-\frac{1}{100}\)(A là đề bài)
Mà \(\frac{1}{5}-\frac{1}{30}=\frac{1}{6}< \frac{1}{5}-\frac{1}{101}< A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow\frac{1}{6}< A< \frac{1}{4}\left(ĐPCM\right)\)
Ta có: \(\frac{1}{5\cdot6}< \frac{1}{5^2}=\frac{1}{5\cdot5}< \frac{1}{4\cdot5}\)
\(\frac{1}{6\cdot7}< \frac{1}{6^2}=\frac{1}{6\cdot6}< \frac{1}{5\cdot6}\)
\(\frac{1}{7\cdot8}< \frac{1}{7^2}=\frac{1}{7\cdot7}< \frac{1}{6\cdot7}\)
.............................
\(\frac{1}{100\cdot101}< \frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}\)
Đặt \(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{100\cdot101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)
\(B=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(=>\frac{1}{6}< A< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< B< \frac{1}{4}\)
\(=>\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(Đpcm\right)\)