\(1^3+2^3+3^3+...+n^3\)là 1 số chính phương 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

13 + 23 + ... + n3 = ( 1 + 2 + ... + n )2

=> 13 + 2+ ... + n3 là số chính phương

22 tháng 3 2017

Nếu n=4 thì: \(1!+2!+3!+4!=33.\) không là số chính phương.

Nếu n>4 thì ta luôn có n! tận cùng bằng 0 (vì có tích 2*5).

\(\Rightarrow1!+2!+3!+...+n!\) có tận cùng là 3 ko là số chính phương.

Vậy ...

22 tháng 3 2017

nnnnnnnnnnnnnnnnmnnnnnnnnnnnnnnnnnnnnnnnnnnnnn=4

24 tháng 1 2019

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)

Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)

\(=k\left(k+1\right)+1\left(k+1\right)\)

\(=k^2+k+k+1=k^2+2k+1\)

Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)

\(\Rightarrow k^2+2k>k^2\)

Ta có : \(k^2< k^2+2k< k^2+2k+1\)

hay : \(k^2< k^2+2k< \left(k+1\right)^2\)

Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp

\(\Rightarrow k^2+2k\)không phải là số chính phương

24 tháng 1 2019

\(Giai\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(\text{Đặt:n2+3n=t}\)

\(A=t\left(t+2\right)=\left(t+1\right)^2-1\)

Đến đây cậu đã làm được chưa ạ?

24 tháng 1 2019

\(\text{Giải}\)

\(+,n=1\Rightarrow1!+2!+.....+n!=1=1^2\left(tm\right)\)

\(+,n=2\Rightarrow1!+2!+......+n!=3\left(loai\right)\)

\(+,n=3\Rightarrow1!+2!+......+n!=9=3^2\left(tm\right)\)

\(+,n=4\Rightarrow1!+2!+....+n!=33\left(loai\right)\)

\(+,n\ge5\Rightarrow n!=\left(...0\right)\Rightarrow1!+2!+....+n!=33+\left(...0\right)+\left(....0\right)+...+\left(...0\right)=\left(....3\right)\left(loai\right)\)

\(\text{Vậy:n=1 và n=3 thỏa mãn đề bài}\)

26 tháng 1 2018

2) Ta có: \(S=\frac{3x-8}{x-5}=\frac{3x-15+7}{x-5}=\frac{3\left(x-5\right)+7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}\) \(=3+\frac{7}{x-5}\)

Để S là số nguyên \(\Leftrightarrow\frac{7}{x-5}\in Z\)

\(\Leftrightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Nếu x - 5 = 1 thì x = 6

Nếu x - 5 = -1 thì x = 4

Nếu x - 5 = 7 thì x = 12

Nếu x - 5 = -7 thì x = -2

Vậy \(x=\left\{-2;4;6;12\right\}\)