Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 1/5^2 + 2/5^3 + 3/5^4 + ... + 10/5^11 + 11/5^12 .
5P = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)
5P - P = ( \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)) - ( 1/5^2 + 2/5^3 + 3/5^4 + ... + 10/5^11 + 11/5^12 . )
4P = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)
4P = \(\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}< \frac{1}{4}\)
\(P< \frac{1}{16}\)
A=1/2x(1/2+1/6+1/12+...+1/10100)
=1/2x(1/1x2+1/2x3+1/3x4+...+1/100x101)
=1/2x(1-1/2+1/2-1/3+1/3+1/4+...+1/100-1/101)
=1/2x(1-1/101)
=1/2x100/101=50/101 (đúng thì cho mk nhoa)
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
\(A=\frac{1}{5}+\frac{1}{5^2}+......+\frac{1}{5^{100}}\)
\(\Leftrightarrow5A=1+\frac{1}{5}+\frac{1}{5^2}+.....+\frac{1}{5^{99}}\)
\(\Leftrightarrow5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{100}}\right)\)
\(\Leftrightarrow4A=1-\frac{1}{5^{100}}< 1\)
\(\Leftrightarrow A< \frac{1}{4}\left(đpcm\right)\)
Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a+m}{b+m}< \frac{a}{b}< \frac{a-m}{b-m}\) (a;b;m \(\in\) N*) ta có:
\(S=\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}.\frac{10}{9}...\frac{100}{99}\)
=> \(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{9}{8}.\frac{11}{10}....\frac{101}{100}< S< \frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}.\frac{9}{8}...\frac{99}{98}\)
\(\Rightarrow\left(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}\right)^2.\frac{8}{7}.\frac{9}{8}.\frac{10}{9}.\frac{11}{10}...\frac{100}{99}.\frac{101}{100}\) < S2 \(< \left(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}\right)^2.\frac{9}{8}.\frac{10}{9}...\frac{99}{98}.\frac{100}{99}\)
=> \(\left(\frac{16}{5}\right)^2.\frac{101}{7}\) < S2 < \(\left(\frac{128}{35}\right)^2.\frac{100}{8}\)
=> 147 < S2 < 167
=> 144 < S2 < 169
=> 122 < S2 < 132
=> 12 < S < 13 (đpcm)
bạn có: 3G = (5 + 8/3) + (11/3^2 + 14/3^3 + ... + 299/3^98 + 302/3^99)
G = 5/3 + (8/3^2 + 11/3^3 + .... + 296/3^98 + 299/3^99 + 302/3^100)
bạn có 3G - G = 5 + 8/3 - 5/3 + (11/3^2 - 8/3^2) + (14/3^3 - 11/3^3) + .... + (299/3^98 - 296/3^98) + (302/3^99 - 299/3^99) - 302/3^100
hay 2G = 5 +8/3 - 5/3 + (3/3^2 + 3/3^3 + ... + 3/3^98 + 3/3^99) - 302/3^100
2G = 6 + (1/3 + 1/3^2 +... + 1/3^97 + 1/3^98)
đặt H = 1/3 + 1/3^2 + ... + 1/3^97 + 1/3^98
suy ra ta có 3H = 1 + 1/3 + .... + 1/3^96 + 1/3^97
3H - H = 1 - 1/3^98 hay 2H = 1 - 1/3^98
ở trên bạn có:
2G = 6 + (1/3 + 1/3^2 +... + 1/3^97 + 1/3^98)
hay 2G = 6 + H
hay 4G = 12 + 2H
hay 4G = 12 + 1 - 1/3^98
hay G = 13/4 - (1/3^98)/4
tìm được giá trị của G rồi thì bạn dễ dàng tìm được các bước tiếp theo thôi :D, sr vì tớ lười :D
\("!"\) là giai thừa đó bạn ạ .
\(VD:\) \(3!=1.2.3=6\)
\(4!=1.2.3.4=24\)