Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n phải lẻ và n\(\in\)N nha bn!
phân tích 234 ra thừa số nguyên tố ta đựợc:
234=2.32.13.ta cần chứng minh:
\(A⋮2;A⋮9;A⋮13\) vì ƯCLN(2;9;13)=234
ta lại có:\(\left(118^n-16^n\right)\)\(⋮\)(118-16)=102\(⋮\)2
\(101^n+1⋮\left(101+1\right)=102⋮2\)
\(\Rightarrow\)A=\(\left(118^n-16^n\right)\)-(\(101^n+1\))\(⋮2\) (1)
tương tự: \(118^n-1⋮\left(118-1\right)=117⋮9;13\)
\(101^n+16^n⋮\left(101+16\right)=117⋮9;13\)
\(\Rightarrow\)A=\(\left(118^n-1\right)-\left(101^n+16^n\right)⋮9;13\)(2)
Từ (1) và (2) \(\Rightarrow\)A chia hết cho 2;9;13
Vậy A chia hết cho 234
Chúc các bn học tốt
Phạm Vũ Trí Dũng
\(VT=x\sqrt{16-y}+\sqrt{\left(16-x^2\right).y}\)
\(VT^2\le\left(x^2+16-x^2\right)\left(16-y+y\right)=16^2\)
\(\Rightarrow VT\le16\)
Dấu "=" xảy ra khi \(x^2y=\left(16-y\right)\left(16-x^2\right)\Leftrightarrow y=16-x^2\) (\(x\ge0\))
\(x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\le\frac{x^2+16-y}{2}+\frac{y+16-x^2}{2}=16\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x\ge0\\y=16-x^2\end{matrix}\right.\)
Nếu n chẵn thì 118n - 101n - 16n - 1 \(⋮̸\)702 ( vì chẵn trừ chẵn trừ chẵn bằng chẵn, chẵn trừ lẻ bằng lẻ, không chia hết cho 702.
=> 118n - 101n - 16n - 1 \(⋮̸\)702 thì n lẻ