Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)
=>4^x=4^8
=>x=8
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)
=>2^x=2^11
=>x=11
c: =>1/6*6^x+6^x*36=6^15(1+6^3)
=>6^x=6*6^15
=>x=16
d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)
=>x=9
\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)
=>2n-1=25=>n-1=5=>n=5+1=6
vậy......
~~~~~~~~~~~~~~~
a, \(4^3.5^3=\left(4.5\right)^3=20^3=8000\)
b, \(6^3.5^3=\left(6.5\right)^3=30^3=27000\)
c, \(8^2.5^2=\left(8.5\right)^2=40^2=1600\)
d, \(125^3.8^3=\left(125.8\right)^3=1000^3\)
e, \(5^2.6^2.3^2=\left(5.6.3\right)^2=90^2\)
a) \(7^6+7^5-7^4\) = \(7^4.\left(7^2+7-1\right)\) =\(7^4.55\) (55 chia hết cho 11) Vậy \(7^6+7^5-7^4⋮11\) b) \(10^9+10^8+10^7\) = \(10^7.\left(10^2+10+1\right)\) = \(10^7.111\) =\(10^6.10.111\) =\(10^6.5.2.111\) =\(10^6.5.222⋮222\) Vậy \(10^9+10^8+10^7⋮222\)
- \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{\left(2^2\right)^6.3^4.\left(3^2\right)^5}{\left(2.3\right)^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
- \(\frac{3^{10}.11+9^5.5}{3^9.2^4}=\frac{3^{10}.11+\left(3^2\right)^5.5}{3^9.16}=\frac{3^{10}.11+3^{10}.5}{3^9.16}=\frac{3^{10}.\left(11+5\right)}{3^9.16}=\frac{3^{10}.16}{3^9.16}=3\)
- 2100 - 299 - 298 - ... - 22 - 2
= 2100 - (299 + 298 + ... + 22 + 2)
Đặt A = 299 + 298 + ... + 22 + 2
2A = 2100 + 299 + ... + 23 + 22
2A - A = (2100 + 299 + ... + 23 + 22) - (299 + 298 + ... + 22 + 2)
A = 2100 - 2
Ta có:
2100 - 299 - 298 - ... - 22 - 2
= 2100 - (2100 - 2)
= 2100 - 2100 + 2
= 0 + 2
= 2
- 38 : 36 + (22)4 : 29
= 32 + 28 : 29
\(=9+\frac{1}{2}\)
\(=\frac{18}{2}+\frac{1}{2}=\frac{19}{2}\)
1: \(=\dfrac{3}{4}+\dfrac{5}{4}\cdot\dfrac{8}{3}-\dfrac{1}{4}\cdot\dfrac{5}{6}=\dfrac{3}{4}+\dfrac{10}{3}-\dfrac{5}{24}\)
\(=\dfrac{18}{24}+\dfrac{80}{24}-\dfrac{5}{24}=\dfrac{93}{24}=\dfrac{31}{8}\)
2: \(=\left(7+\dfrac{23}{27}-\dfrac{23}{27}\right)+\left(\dfrac{11}{25}+\dfrac{14}{25}\right)+3.25\)
\(=7+1+3.25=8+3.25=11.25\)
3: \(=\left(\dfrac{1}{9}\cdot9\right)^{2005}-4^2=1-16=-15\)
4: \(=2\cdot\dfrac{9}{4}-\dfrac{7}{2}=\dfrac{9}{2}-\dfrac{7}{2}=1\)
5: \(=\dfrac{15}{2}\cdot\dfrac{-3}{5}+\dfrac{5}{2}\cdot\dfrac{-3}{5}=\dfrac{-3}{5}\cdot\left(\dfrac{15}{2}+\dfrac{5}{2}\right)=\dfrac{-3}{5}\cdot10=-6\)
6: \(=\left(\dfrac{6}{10}+\dfrac{5}{10}\right)^2=\left(\dfrac{11}{10}\right)^2=\dfrac{121}{100}\)
7: \(=\dfrac{1}{2}\cdot\dfrac{-7}{2}=\dfrac{-7}{4}\)
Câu 1 :
\(\text{a) }B=\dfrac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\\ B=\dfrac{\left(2^2\right)^6\cdot\left(3^2\right)^5+\left(2\cdot3\right)^9\cdot\left(2^3\cdot3\cdot5\right)}{\left(2^3\right)^4\cdot3^{12}-6^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-\left(2\cdot3\right)^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(6-1\right)}\\ B=\dfrac{2\cdot6}{3\cdot5}\\ B=\dfrac{4}{5}\\ \)
\(\text{b) }C=\dfrac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\\ C=\dfrac{5\cdot\left(2^2\right)^{15}\cdot\left(3^2\right)^9-2^2\cdot3^{20}\cdot\left(2^3\right)^9}{5\cdot2^9\cdot\left(2\cdot3\right)^{19}-7\cdot2^{29}\cdot\left(3^3\right)^6}\\ C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}}{5\cdot2^9\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\\ C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{28}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\\ C=\dfrac{2^{29}\cdot3^{18}\left(10-9\right)}{2^{28}\cdot3^{18}\left(15-14\right)}\\ C=\dfrac{2^{29}\cdot3^{18}}{2^{28}\cdot3^{18}}\\ C=2\\ \)
\(\text{c) }D=\dfrac{49^{24}\cdot125^{10}\cdot2^8-5^{30}\cdot7^{49}\cdot4^5}{5^{29}\cdot16^2\cdot7^{48}}\\ D=\dfrac{\left(7^2\right)^{24}\cdot\left(5^3\right)^{10}\cdot2^8-5^{30}\cdot7^{49}\cdot\left(2^2\right)^5}{5^{29}\cdot\left(2^4\right)^2\cdot7^{48}}\\ D=\dfrac{7^{48}\cdot5^{30}\cdot2^8-5^{30}\cdot7^{49}\cdot2^{10}}{5^{29}\cdot2^8\cdot7^{48}}\\ D=\dfrac{7^{48}\cdot5^{30}\cdot2^8\left(1-28\right)}{5^{29}\cdot2^8\cdot7^{48}}\\ D=5\cdot\left(-27\right)\\ D=-135\)
Câu 2 :
\(\text{a) }9^{x+1}-5\cdot3^{2x}=324\\ \Leftrightarrow9^x\cdot9-5\cdot9^x=81\cdot4\\ \Leftrightarrow9^x\left(9-5\right)=9^2\cdot4\\ \Leftrightarrow9^x\cdot4=9^2\cdot4\\ \Leftrightarrow9^x=9^2\\ \Leftrightarrow x=2\\ \text{Vậy }x=2\\ \)
Sorry . Mình chỉ biết đến đây thôi
a) \(11^6-11^5+11^4=11^4.\left(11^2-11+1\right)=11^4.111\)
Vì 111 chia hết cho 111
\(\Rightarrow11^4.111chiahếtcho111\)
VẬy \(11^6-11^5+11^4⋮111\)