K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đối với câu a thì bạn phân tích ra nha:

ta có:

 A = \(\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)

 B = \(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}=\frac{-8}{10^{2005}}+\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}\)

vì \(\frac{8}{10^{2005}}>\frac{8}{10^{2006}}=>\frac{-8}{10^{2005}}< \frac{-8}{10^{2006}}\)

=> A > B

CÂU b mk làm phân số hơi mất thời gian nên bn thông cảm cho mk nha:

1/5*8 + 1/8*11 + 1/11*14 +...+ 1/x(x+3) = 101/1540

=> 1/5 - 1/8 + 1/8 - 1/11 + 1/11 -...+ (1/x) - (1/ x+3) = 101/1540

=>1/5 - 1/x+3 = 101/1540

=> 1/x+3 = 1/5 - 101/1540

=> 1/x+3 = 1/308

=> 308*1 = (x+3)*1

=> 308 = x+3

=> x = 308 - 3

=> x = 305

Chúc bn học tốt !

két bn vớ mk . mk bày cho chớ làm vào đây tốn thời gian lắm

27 tháng 1 2019

\(A=\frac{\left(-2\right)^3\cdot3^3\cdot5^3\cdot7\cdot8}{3\cdot5^3\cdot2^4\cdot42}\)

\(=\frac{\left(-2\right)^3\cdot3^3\cdot6^3\cdot5^3\cdot7\cdot2^3}{3\cdot5^3\cdot2^4\cdot2\cdot3\cdot7}\)

\(=\frac{\left(-2\right)^3\cdot3^8\cdot5^3\cdot2^3\cdot7}{3^2\cdot5^3\cdot2^5\cdot7}=-2\cdot3^6\)

câu b để nghĩ...

28 tháng 4 2017

bài khó nhất nhé

2. Ta có : 

\(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

cộng vào 48 phân số đầu với 1, trừ phân số cuối đi 48 ta được :

\(P=\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\left(\frac{49}{1}-48\right)\)

\(P=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

\(P=\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)

\(P=50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}}{50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)}=\frac{1}{50}\)

9 tháng 3 2019

câu 5đáp án là72

22 tháng 8 2020

1) Ta có : \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)

=> x + 1 = 0

=> x = - 1

b) \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)

=> \(\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+1}{2009}+1\right)\)

=> \(\frac{x+2010}{2006}+\frac{x+2010}{2007}=\frac{x+2010}{2008}+\frac{x+2010}{2009}\)

=> \(\left(x+2010\right)\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

Vì \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)

=> x + 2010 = 0

=> x = -2010

c) \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)

\(\Rightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)=\left(\frac{x+1975}{75}-1\right)+\left(\frac{x+1969}{69}-1\right)\)

=> \(\frac{x+1900}{45}+\frac{x+1900}{54}=\frac{x+1900}{75}+\frac{x+1900}{69}\)

=> \(\left(x+1900\right)\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)

=> \(x+1900=0\left(\text{Vì }\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\ne0\right)\)

=> x = -1900

d) \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)

=> \(\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)=\left(\frac{x+2012}{8}+2\right)+\left(\frac{x+2014}{7}+2\right)\)

=> \(\frac{x+2028}{10}+\frac{x+2028}{9}=\frac{x+2028}{8}+\frac{x+2028}{7}\)

=> \(\left(x+2028\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)

=> x + 2028 = 0 \(\left(\text{Vì }\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\ne0\right)\)

=> x = -2028

22 tháng 8 2020

1) Ta có: \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

        \(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

        \(\Leftrightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

  + TH1\(x+1=0\)\(\Leftrightarrow\)\(x=-1\)

  + TH2\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{10}>\frac{1}{13}\\\frac{1}{11}>\frac{1}{14}\\\frac{1}{12}>0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)

            \(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)

             mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)

             \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-1\)

2) Ta có: \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)

        \(\Leftrightarrow\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)-\left(\frac{x+2}{2008}+1\right)-\left(\frac{x+1}{2009}+1\right)=0\)

        \(\Leftrightarrow\frac{x+2010}{2006}+\frac{x+2010}{2007}-\frac{x+2010}{2008}-\frac{x+2010}{2009}=0\)

        \(\Leftrightarrow\left(x+2010\right).\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

  + TH1\(x+2010=0\)\(\Leftrightarrow\)\(x=-2010\)

  + TH2\(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{2006}>\frac{1}{2008}\\\frac{1}{2007}>\frac{1}{2009}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}>\frac{1}{2008}+\frac{1}{2009}\)

              \(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>0\)

               mà \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-2010\)

3) Ta có: \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)

        \(\Leftrightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)-\left(\frac{x+1975}{75}-1\right)-\left(\frac{x+1969}{69}-1\right)=0\)

        \(\Leftrightarrow\frac{x+1900}{45}+\frac{x+1900}{54}-\frac{x+1900}{75}-\frac{x+1900}{69}=0\)

       \(\Leftrightarrow\left(x+1900\right).\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)

  

  + TH1\(x+1900=0\)\(\Leftrightarrow\)\(x=-1900\)

  + TH2\(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{45}>\frac{1}{75}\\\frac{1}{54}>\frac{1}{69}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}>\frac{1}{75}+\frac{1}{69}\)

              \(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}>0\)

               mà \(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-1900\)

4) Ta có: \(\frac{x-99}{5}+\frac{x-97}{7}=\frac{x-95}{9}+\frac{x-93}{11}\)

         \(\Leftrightarrow\left(\frac{x-99}{5}-1\right)+\left(\frac{x-97}{7}-1\right)-\left(\frac{x-95}{9}-1\right)-\left(\frac{x-93}{11}-1\right)=0\)

         \(\Leftrightarrow\frac{x-104}{5}+\frac{x-104}{7}-\frac{x-104}{9}-\frac{x-104}{11}=0\)

         \(\Leftrightarrow\left(x-104\right).\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)=0\)

  

  + TH1\(x-104=0\)\(\Leftrightarrow\)\(x=104\)

  + TH2\(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{5}>\frac{1}{7}\\\frac{1}{9}>\frac{1}{11}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}>\frac{1}{9}+\frac{1}{11}\)

              \(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}>0\)

               mà \(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=104\)

5) Ta có: \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)

        \(\Leftrightarrow\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)-\left(\frac{x+2012}{8}+2\right)-\left(\frac{x+2014}{7}+2\right)=0\)

        \(\Leftrightarrow\frac{x+2028}{10}+\frac{x+2028}{9}-\frac{x+2028}{8}-\frac{x+2028}{7}=0\)

        \(\Leftrightarrow\left(x+2028\right).\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)

    + TH1\(x+2028=0\)\(\Leftrightarrow\)\(x=-2028\)

    + TH2\(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{10}< \frac{1}{8}\\\frac{1}{9}< \frac{1}{7}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}< \frac{1}{8}+\frac{1}{7}\)

              \(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}< 0\)

               mà \(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-2028\)

Chúc bn hok tốt nha

29 tháng 3 2018

= nhau

15 tháng 5 2018

= nhau

31 tháng 1 2019

zài thế

10 tháng 3 2017

đề đúng k bạn

10 tháng 3 2017

đề có đúng ko đó bạn