Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn ai sau p/s 1/2009 là dấu= chứ ko phải là dấu cộng nha
sau ps 1/2009 trắng tinh nếu thêm vào đấy chứng minh cái gì bạn ???
\(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)
\(\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}\)
\(\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\)
\(\left(x-2010\right)\times\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\right)=0\)
Vì \(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\)
=> \(x-2010=0\)
\(x=2010\)
\(\dfrac{x-1}{2009}\)+\(\dfrac{x-2}{2008}\)=\(\dfrac{x-3}{2007}\)+\(\dfrac{x-4}{2006}\)
=>\(\dfrac{x-1}{2009}\)-1+\(\dfrac{x-2}{2008}\)+1=\(\dfrac{x-3}{2007}\)-1+\(\dfrac{x-4}{2006}\)-1
=>(x-2010)x(\(\dfrac{1}{2009}\)+\(\dfrac{1}{2008}\)-\(\dfrac{1}{2007}\)-\(\dfrac{1}{2006}\))=0
=>x-2010=0 (vì \(\dfrac{1}{2009}\)+\(\dfrac{1}{2008}\)-\(\dfrac{1}{2007}\)\(\dfrac{1}{2006}\)≠0)
=>x=2010
a) (-1) + 2 + (-3) + 4 + .... + (-2009) + 2010
= (-1 + 2) + (-3 + 4) + ..... + (-2009 + 2010)
= -1 + (-1) + (-1) + .... + (-1)
= -1 . 1005 = -1005
b) 1 + (-2) + (-3) + 4 + 5 + (-6) + (-7) + 8 + ... + 2005 + (-2006) + (-2007) + 2008
= [1 + (-2) + (-3) + 4] + [5 + (-6) + (-7) + 8 ] + ..... + [2005 + (-2006) + (-2007) + 2008]
= 0 + 0 + ...... + 0 = 0
Ta có :
\(A=\dfrac{\dfrac{2008}{1}+\dfrac{2007}{2}+....................+\dfrac{2}{2007}+\dfrac{1}{2008}}{\dfrac{1}{2}+\dfrac{1}{3}+....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\left(\dfrac{2007}{2}+1\right)+.....+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\dfrac{2009}{2}+...................+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}}{\dfrac{1}{2}+\dfrac{1}{3}+.....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{2009\left(\dfrac{1}{2}+..........................+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+............................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=2009\)