Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Ta có:
\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)
\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)
Mà \(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)
Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)
b)
\(2^9+2^{99}=2^9(1+2^{90})\)
Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$
$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$
Mà $2^9\vdots 4$
Do đó:
$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)
#)Giải :
a) Đặt A = 29 + 299 = 29 + ( 211)9
A = ( 2 + 211)( 28 - 27 x 211 + ... - 2 x 277 + 288)
Nhân tử thứ nhất 2 + 211 = 2050
Nhân tử thứ hai là một số chẵn = 2A ( vì là tổng hiệu của các bội của 2 )
=> A = 2050 x 2A = 4100 x A => A chia hết cho 100
Ta có: 31+32+33+…+399+3100
=(31+32)+(33+34)+…+(399+3100)
=3.(1+3)+33.(1+3)+…+399.(1+3)
=3.4+33.4+…+399.4
=(3+33+…+399).4 chia hết cho 4
=>31+32+33+…+399+3100 chia hết cho 4
Đặt \(A=3+3^2+3^3+...+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^{ 3}\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\)
\(=4\left(3+3^3+...+3^{99}\right)\)
Vì 4 chia hết cho 4 nên \(4\left(3+3^3+...+3^{99}\right)\)
Vậy A chia hết cho 4
a) Ta có : M = 3 + 32 + 33 + ... + 3100
=> M = (3 + 32) + (33 + 34) + ... + (399 + 3100)
=> M = 12 + 32(3 + 32) + ... + 398(3 + 32)
=> M = 12 + 32.12 + ... + 398.12
=> M = 12(1 + 32 + ... + 398) \(⋮\)12
Do 12 = 3 . 4 \(⋮\)4 => M \(⋮\)4
b) Ta có: 2m + 3 = 3
=> 2m = 3 - 3
=> 2m = 0
=> m = 0 : 2
=> m = 0
ta có: 3102 - 2102 + 3100 - 2100
= 3100.(32 +1) - 299.(23+2)
= 3100.10 - 299.10
= 10.(3100 - 299) chia hết cho 10
=> ...