Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n2 + 3n + 3 | 2n-1
- 2n2 - n | n + 2
0 + 4n +3
- + 4n -2
+ 5
Để phép chia tren là phép chia hết thì :
\(5⋮2n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
+ ) 2n - 1 = 1
2n = 2
n = 1
+ ) 2n - 1 = -1
2n = 0
n = 0
+ ) 2n - 1 = 5
2n = 6
n = 3
+ ) 2n - 1 = -5
2n = -4
n = -2
Vậy x \(\in\) { -2;3 ;1 ; 0 }
b: \(\Leftrightarrow n^3-8+6⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
c: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
\(C=\dfrac{A}{B}=\dfrac{n^3+2n^2-3n+2}{n^2-n}=\dfrac{\left(n^3-n^2\right)+3n^2-3n+2}{n^2-n}=\dfrac{n\left(n^2-n\right)+3\left(n^2-n\right)+2}{n^2-n}\)\(C=n+3+\dfrac{2}{n^2-n}\)
\(n,C\in Z\Rightarrow\dfrac{2}{n^2-n}\in Z\Rightarrow n^2-n=\left\{-2;-1;1;2\right\}\)
n^2 -n là hai số chẵn
\(\left[{}\begin{matrix}n^2-n=-2\\n^2-n=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}n^2-n=-2\left(vn\right)\\n^2-n=2\left[{}\begin{matrix}n_1=-1\\n_2=2\end{matrix}\right.\end{matrix}\right.\)
a) ta có : \(\dfrac{n^3-3n^2-3n-1}{n^2+n+1}=\dfrac{n^3+n^2+n-4n^2-4n-4+3}{n^2+n+1}\)
\(=\dfrac{n\left(n^2+n+1\right)-4\left(n^2+n+1\right)+3}{n^2+n+1}=n-4+\dfrac{3}{n^2+n+1}\)
\(\Rightarrow n^2+n+1\) là ước của \(3\) \(\Rightarrow n^2+n+1\in\left\{\pm1;\pm3\right\}\)
giải tiếp nha .
câu b bn lm tương tự cho quen
b: \(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;-1;5;-5;13;-13;65;-65\right\}\)
hay \(n\in\left\{0;2;-2;8;-8\right\}\)
a: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
=>n(n+1)=0 hoặc (n+2)(n-1)=0
hay \(n\in\left\{0;-1;-2;1\right\}\)
b: \(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;-1;5;-5;13;-13;65;-65\right\}\)
hay \(n\in\left\{0;2;-2;8;-8\right\}\)
a: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
=>n(n+1)=0 hoặc (n+2)(n-1)=0
hay \(n\in\left\{0;-1;-2;1\right\}\)
\(n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left[\left(n^2+2n\right)+\left(n+2\right)\right]\)
\(=n\left(n+1\right)\left(n+2\right)\)