Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
Ngoài ra trong đó còn có 1 số chia hết cho 2 vì có 2 tự nhiên liên tiếp
Mà (2,3)=1 Do đó \(n^3-n\) chia hết cho 6
Em tham khảo tại đây nhé:
Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath
n + 4 ⋮ n - 1 (1 ≠ n \(\in\) N)
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
n - 1 | - 5 | -1 | 1 | 5 |
n | - 4 | 0 | 2 | 6 |
1 ≠ n \(\in\) N | loại | nhận | nhận | nhận |
Theo bảng trên ta có n \(\in\) {0; 2; 6}
Vậy n \(\in\) {0; 2; 6}
giả sử n^2+n+6 chia hết cho5 thì ta có:
n(n+1)+2 chia hết cho 5
Má n(n+1)suy ra n(n+1)+2 chẵn
Suy ra n(n+1)+2có tận cùng là 0
Suy ra n(n+1) có tận cùng là 8
Má n(n+1)lá tích 2 số liên tiếp nên k tìm được n
Giả thuyết trên k hợp lý
Vậy...................
Vì n là số tự nhiên không chia hết cho 2 hay 3 nên n có dạng \(6k+1\) hoặc \(6k+5\).
Nếu \(n=6k+1\) thì hiển nhiên \(n^2-1⋮6\) và \(3n=18k+3\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.
Nếu \(n=6k+5\) thì \(n^2-1⋮6\) (cái này dễ cm nên mình không trình bày ở đây) và \(3n=18k+15\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.
Ta có đpcm.
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
Ta có:n3+11n=n3-n+12n=n(n2-1)+12n=(n-1)n(n+1)+12n
Trong 3 số liên tiếp luôn có một số chia hết cho 3 nên (n-1)n(n+1) chia hết cho 3
Mặt khác ta có:(n-1)n(n+1) chia hết cho 2(tích hai số liên tiếp)
Mà UCLN(2,3)=1 nên (n-1)n(n+1) chia hết cho 6
\(\Rightarrow\)n3+11n chia hết cho 6