Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(a+b)(b+c)(c+a)+abcA=(a+b)(b+c)(c+a)+abc
=a2b+ab2+a2c+ac2+b2c+bc2+2abc+abc=a2b+ab2+a2c+ac2+b2c+bc2+2abc+abc
=ab(a+b+c)+bc(a+b+c)+ca(a+b+c)=ab(a+b+c)+bc(a+b+c)+ca(a+b+c)
=(a+b+c)(ab+bc+ca)=(a+b+c)(ab+bc+ca)
Vậy....
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Ta có: S = (a/a+b+c +b/a+b+c +c/a+b+c) + (a+b+c /a + a+b+c /b + a+b+c /c) -a/b -a/c -b/a -b/c -c/a -c/b
= a+b+c/ a+b+c + 1+ b/a +c/a +a/b +1 +c/b +a/c +b/c +1 -a/b -a/c -b/a -b/c -c/a- c/b
= 1+1+1+1 (vì a+b+c khác 0)
= 4
Vậy S = 4
Bài này bạn chỉ cần tách đơn giản vậy thôi.Chúc bạn học tốt.
\(S=\dfrac{a}{a+b+c}+\dfrac{a+b+c}{a}+\dfrac{b}{a+b+c}+\dfrac{a+b+c}{b}+\dfrac{c}{a+b+c}+\dfrac{a+b+c}{c}-\dfrac{a}{b}-\dfrac{a}{c}-\dfrac{b}{a}-\dfrac{b}{c}-\dfrac{c}{a}-\dfrac{c}{b}=\dfrac{a+b+c}{a+b+c}+\dfrac{a+b+c-b-c}{a}+\dfrac{a+b+c-a-c}{b}+\dfrac{a+b+c-a-b}{c}=1+1+1+1=4\)