Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x-y\right)^3-3\left(x-y\right)^2+3\left(x-y\right)-1-\left(x-y\right)^3-3\left(x-y\right)^2-3\left(x-y\right)-1+6\left(x-y\right)^2\)
=-2
a\(=3x^2-6x+6x-3x^2+5=5\)=>ko phụ thuộc vào biến x
b,\(=2x^2y-2xy^2+2xy^2-x^2y-x^2y=0\)=>ko phụ thuộc vào biến ,x,y
a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x
= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)
= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2
= 0 (đpcm)
mẹo của những câu này là: kết quả cuối cùng LUÔN LÀ HỆ SỐ TỰ DO
câu a ta thấy 3(x^2-8y^3+10) có 3x10 là hstd => 30
b:có hstd 1 ở (2x-1)(x^2+x-1) 25 ở bt(x-5)^2 và hstd 2 ở 2(x+1)(x^2-x+1) và 14 ở -7(x-2)
->hstd là 1+25+2+14=42
mấy cái tách thì khai triển hết ra rồi loại hết đi :v
nếu mình nhìn thiếu gì thì bạn bỏ qua cho mn nhé. đây chỉ là mẹo thôi
mn sắp thi r. chào b. chúc b học tốt
=3x^2 -15xy - 3y^2 + 15xy - 1 -3x^2 + 3y^2 =-1
vậy biểu thức không phụ thuộc vào biến
\(B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow B=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)\)
\(\Leftrightarrow B=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)
\(\Leftrightarrow B=\left(x^3-x^3\right)+\left(-3x^2-3x^2+6x^2\right)+\left(3x-3x\right)+\left(-1-1-6\right)\)
\(\Leftrightarrow B=-8\)
Vậy biểu thức trên không phụ thuộc vào biến x (Đpcm)
\(\left(x+2\right)^3-\left(x+6\right)\left(x^2+12\right)+64\)
\(=x^3+6x^2+12x+8-x^3-12x-6x^2-72+64\)
\(=\left(x^3-x^3\right)+\left(6x^2-6x^2\right)+\left(12x-12x\right)+8-72+64\)
\(=0\)
Vậy biểu thức trên không phụ thuộc vào giá trị của biến
(x+2)3-(x+6)(x2+12)+64
=(x3+6x2+12x+8)-(x3+6x2+12x+72)+64
=8-72+64=0
=>Giá trị của biểu thức trên không phụ thuộc vào biến
NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
1. (A+B)2 = A2+2AB+B2
2. (A – B)2= A2 – 2AB+ B2
3. A2 – B2= (A-B)(A+B)
4. (A+B)3= A3+3A2B +3AB2+B3
5. (A – B)3 = A3- 3A2B+ 3AB2- B3
6. A3 + B3= (A+B)(A2- AB +B2)
7. A3- B3= (A- B)(A2+ AB+ B2)
8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC
\(A=x^4-\left(x^2-1\right)\left(x^2+1\right)=x^4-\left(x^4-1\right)=x^4-x^4+1=1\left(đpcm\right)\)
\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3=2x^2+x-x^3-2x^2+x^3-x+3=3\left(đpcm\right)\)
\(C=x^3+y^3+4-\left(x^2+xy+y^2\right)\left(x-y\right)=x^3+y^3+4-\left(x^3-y^3\right)=x^3+y^3+4-x^3+y^3=2y^3+4\)
=>biểu thức không phụ thuộc vào biến x
=> Đpcm
\(\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)
\(=\left(x-y\right)^3-1-3\left(x-y\right).1\left(x-y-1\right)-\left[\left(x-y\right)^3+1+3\left(x-y\right).1\left(x-y+1\right)\right]+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right)\left(x-y-1\right)-3\left(x-y\right)\left(x-y+1\right)+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right)\left(x-y-1+x-y+1\right)+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right).2\left(x-y\right)+6\left(x-y\right)^2\)
\(=-2-6\left(x-y\right)^2+6\left(x-y\right)^2=-2\)
Vậy biểu thức trên ko phụ thuộc vào biến. Chúc bạn học tốt.