Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dự đoán đẳng thức xảy ra khi x = y = z = 1.
Đặt x = 1 + a ; y = 1 + b , ( a , b $\in$∈ R ). Từ giả thiết suy ra z = 1 - a - b.
Ta có:
$x^2+y^2+z^2+xy+yz+zx$x2+y2+z2+xy+yz+zx$=\left(1+a\right)^2+\left(1+b\right)^2+\left(1-a-b\right)^2+\left(1+a\right)\left(1+b\right)+\left(1+b\right)\left(1-a-b\right)+\left(1-a-b\right)\left(1+a\right)=\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+6\ge6.$=(1+a)2+(1+b)2+(1−a−b)2+(1+a)(1+b)+(1+b)(1−a−b)+(1−a−b)(1+a)=(a+b2 )2+3b24 +6≥6.
Đẳng thức xảy ra khi và chỉ khi.
$b=0;a+\frac{b}{2}=0\Leftrightarrow a=0;b=0\Leftrightarrow x=y=z=1.$b=0;a+b2 =0⇔a=0;b=0⇔x=y=z=1.
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
Ta có
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow4\left(x^2+y^2+xy\right)\ge3\left(x^2+y^2+2xy\right)\)
\(\Leftrightarrow2\sqrt{x^2+xy+y^2}\ge\sqrt{3}\left(x+y\right)\).
Vậy chúng ta có \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\). Chứng minh tương tự, \(\sqrt{y^2+yz+z^2}\ge\frac{\sqrt{3}}{2}\left(y+z\right)\), \(\sqrt{z^2+zx+x^2}\ge\frac{\sqrt{3}}{2}\left(z+x\right)\).
Cộng các bất đẳng thức lại ta được \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right).\)
Cuối cùng, để ý rằng \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\) (vì bất đẳng thức tương đương với \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0.\), luôn đúng).
Suy ra \(x+y+z\ge\sqrt{3}.\) Vậy ta có
\(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\ge3.\) (ĐPCM)
\(T=x^4+y^4+z^4\)
áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)
\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)
\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)
dấu "=" xảy rakhi và chỉ khi
\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)
vậy dấu "=" có xảy ra
\(< =>MIN:T=\frac{4}{3}\)
sửa dòng 3 dưới lên
\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)
Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
vì x , y > 0 ta có
(\(\sqrt{x}\) - \(\sqrt{y}\))2 ≥ 0 ( ∀ x,y >0
⇔ x -2\(\sqrt{xy}\) + y ≥ 0 ( ∀ x,y >0)
⇔ x + y ≥ 2\(\sqrt{xy}\) (đpcm)