Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 10 ⋮ 3a+1 => 3a+1 ∈ Ư(10) => 3a+1 ∈ {1;2;5;10} => a ∈ { 0 ; 1 3 ; 4 3 ; 3 }. Vì a ∈ N, a ∈ {0;3}
b, a+6 ⋮ a+1 => a+1+5 ⋮ a+1 => 5 ⋮ a+1 => a+1 ∈ Ư(5) => a+1 ∈ {1;5} => a ∈ {0;4}
c, 3a+7 ⋮ 2a+3 => 2.(3a+7) - 3(2a+3) ⋮ 2a+3 => 5 ⋮ 2a+3 => 2a+3 ∈ Ư(5)
=> 2a+3 ∈ {1;5} => a = 1
d, 6a+11 ⋮ 2a+3 => 3.(2a+3)+2 ⋮ 2a+3 => 2 ⋮ 2a+3 => 2a+3 ∈ Ư(2)
=> 2a+3 ∈ {1;2} => a ∈ ∅
a, ( a + 3 ) . ( 7 - a ) > 0
TH1 => a + 3 > 0 và 7 - a > 0
= > a > -3 và a < 7
= > -3 < a < 7
TH2 = > a + 3 < 0 và 7 - a < 0
= > a < -3 và a > 7
= > 7 < a < -3 ( vô lí )
Vậy -3 < a < 7
Câu b , c làm tương tự câu a
d, ( 3a - 7 ) . ( 5a + 8 ) < 0
Do 3a - 7 < 5a + 8
= > 3a -7 < 0 và 5a + 8 > 0
= > a < \(\dfrac{7}{3}\) và a > \(\dfrac{-8}{5}\)
Vậy \(\dfrac{-8}{5}< a< \dfrac{7}{3}\)
b4
tìm các số nguyên a sao cho
a, (a+3).(7-a)>0
c,(2a+1).(5-2a)>0
b,(2a+4).(3-a)>0
d,(3a-7).(5a+8)<0
a: (a+3)(7-a)>0
=>(a+3)(a-7)<0
=>-3<a<7
mà a là số nguyên
nên \(a\in\left\{-2;-1;0;1;...;6\right\}\)
b: (2a+4)(3-a)>0
=>(a-3)(a+2)<0
=>-2<a<3
mà a là số nguyên
nên \(a\in\left\{-1;0;1;2\right\}\)
c: (2a+1)(5-2a)>0
=>(2a+1)(2a-5)<0
=>-1/2<a<5/2
mà a là số nguyên
nên \(a\in\left\{0;1;2\right\}\)
d: (3a-7)(5a+8)<0
=>5a+8>0 và 3a-7<0
=>-8/5<a<7/3
mà a là số nguyên
nên \(a\in\left\{-1;0;1;2\right\}\)
\(\frac{1}{a+2}=\frac{2}{a+6}\)
\(\Rightarrow x+6=2\left(a+2\right)\)
\(\Rightarrow x+6=2x+4\)
\(\Rightarrow-x=-2\)
\(\Rightarrow x=2\)
a) \(\frac{1}{a+2}=\frac{2}{a+6}\)
=> a + 6 = 2(a + 2)
=> a + 6 = 2a + 4
=> a - 2a = 4 - 6
=> -a = -2
=> a = 2
c) \(\frac{3a-7}{a-1}=2\)
=> 3a - 7 = 2(a - 1)
=> 3a - 7 = 2a - 2
=> 3a - 2a = -2 + 7
=> a = 5
a/ \(a+3\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{-10;-4;-2;4\right\}\)
b/ \(2a\inƯ\left(-10\right)\)
\(Ư\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(\Rightarrow a\in\left\{-5;-1;1;5\right\}\)do \(a\inℤ\)
c/ \(a+1\inƯ\left(3a+7\right)\Rightarrow3a+7⋮a+1\)
\(\Rightarrow3a+7-3\left(a+1\right)⋮a+1\)
\(\Leftrightarrow4⋮a+1\)
\(Ư\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow a\in\left\{-5;-3;-2;0;1;3\right\}\)
d/ \(2a+1\inƯ\left(3a+5\right)\Rightarrow3a+5⋮2a+1\)
\(\Rightarrow3a+5-\left(2a+1\right)⋮2a+1\)
\(\Leftrightarrow a+4⋮2a+1\)
\(\Rightarrow2\left(a+4\right)⋮2a+1\Leftrightarrow2a+8⋮2a+1\)
\(\Rightarrow2a+8-\left(2a+1\right)⋮2a+1\Leftrightarrow7⋮2a+1\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{-4;-1;0;3\right\}\)
\(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24};\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\Rightarrow x=60;y=72;z=63\)
Ta có : a + b = 7 \(\Rightarrow\)a = 7 - b
b = 7 - a
Thế vào câu trên ta có :
\(\frac{3a+b}{2a+7}=\frac{3\left(7-b\right)+b}{2\left(7-b\right)+7}=\frac{21-3b+b}{14-2b+7}=\frac{21-2b}{21-2b}=1\)
\(\frac{2a+b}{a+7}=\frac{2\left(7-b\right)+b}{7-b+7}=\frac{14-2b+b}{14-b}=\frac{14-b}{14-b}=1\)
Vậy \(\frac{3a+b}{2a+7}-\frac{2a+b}{a+7}=1-1=0\)
\(\frac{3a+b}{2a+7}=\frac{3a+b}{2a+a+b}=\frac{3a+b}{3a+b}=1\)(1)
\(\frac{2a+b}{a+7}=\frac{2a+b}{a+a+b}=\frac{2a+b}{2a+b}=1\)(2)
Từ (1) và (2) => ĐPCM