\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>10\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

P/s : Toán 7 ?  

Số lượng số dãy số trên là : 

\(\left(100-1\right):1+1=100\) ( số ) 

Ta có : 

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100=\frac{100}{10}=10\)

2 tháng 12 2019

Em muốn giải cái gì? Kiểm tra lại đề bài nhé!

5 tháng 12 2016

Dk: x\(\ge0\)

lien hop

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}=2\Rightarrow x=1\)

7 tháng 12 2016

B​ạn có thể giải thích rõ hộ mình dc k???

18 tháng 10 2018

TÍNH NHA M.N  

18 tháng 10 2018

a, \(\sqrt{8}+\sqrt{18}-\sqrt{\frac{1}{2}}=2\sqrt{2}+3\sqrt{2}-\frac{1}{2}\sqrt{2}\)

\(=\frac{9}{2}\sqrt{2}\)

b, \(\frac{3-\sqrt{3}}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)

\(=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)

\(=\sqrt{3}-1+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)

\(=\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+1\right)\) \(=\frac{2\sqrt{2}-\left(\sqrt{2}+1\right)^2}{\sqrt{2}+1}\)

\(=\frac{2\sqrt{2}-2-2\sqrt{2}-1}{\sqrt{2}+1}=-\frac{2+1}{\sqrt{2}+1}\)

c,  PT xác định với mọi x nha!

\(\sqrt{x^2-2x+1}=3\) \(\Rightarrow x^2-2x+1=9\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left(x^2-4x\right)+\left(2x-8\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}}\)

Vậy...

bạn tự kl

21 tháng 12 2017

- các cậu giúp mình với mai thứ 6 mình thi hk1 r huhu giúp mình với.........

20 tháng 5 2017

~-0.138

20 tháng 5 2017

-0.2805267098

23 tháng 5 2018

Với mọi n nguyên dương ta có:

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)

Với k nguyên dương thì 

\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)

\(=\sqrt{k+1}-\sqrt{k-1}\)(*)

Đặt A = vế trái. Áp dụng (*) ta có:

\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)

\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)

...

\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)

Cộng tất cả lại

\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)

3. 

Theo bất đẳng thức cô si ta có: 

\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)

Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)

25 tháng 10 2020

Bài 2: 

a) \(\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{2-1}{\sqrt{1}+\sqrt{2}}=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}=\sqrt{2}-\sqrt{1}\)

Tương tự ta có: \(\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}\);

\(\frac{1}{\sqrt{3}+\sqrt{4}}=\sqrt{4}-\sqrt{3}\); ............. ; \(\frac{1}{\sqrt{2024}+\sqrt{2025}}=\sqrt{2025}-\sqrt{2024}\)

\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+......+\sqrt{2025}-\sqrt{2024}\)

\(=\sqrt{2025}-\sqrt{1}=45-1=44\)

Bài 4: 

\(M=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

\(=\frac{\sqrt{2-2\sqrt{2}+1}}{\sqrt{9-2.3.2\sqrt{2}+8}}-\frac{\sqrt{2+2\sqrt{2}+1}}{\sqrt{9+2.3.2\sqrt{2}+8}}\)

\(=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-\sqrt{8}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+\sqrt{8}\right)^2}}\)

\(=\frac{\left|\sqrt{2}-1\right|}{\left|3-\sqrt{8}\right|}-\frac{\left|\sqrt{2}+1\right|}{\left|3+\sqrt{8}\right|}=\frac{\sqrt{2}-1}{3-\sqrt{8}}-\frac{\sqrt{2}+1}{3+\sqrt{8}}\)

\(=\frac{\left(\sqrt{2}-1\right)\left(3+\sqrt{8}\right)}{\left(3-\sqrt{8}\right)\left(3+\sqrt{8}\right)}-\frac{\left(\sqrt{2}+1\right)\left(3-\sqrt{8}\right)}{\left(3+\sqrt{8}\right)\left(3-\sqrt{8}\right)}\)

\(=\left(3\sqrt{2}+\sqrt{16}-3-\sqrt{8}\right)-\left(3\sqrt{2}-\sqrt{16}+3-\sqrt{8}\right)\)

\(=3\sqrt{2}+4-3-\sqrt{8}-3\sqrt{2}+4-3+\sqrt{8}\)

\(=8-6=2\)là số tự nhiên