Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số phần tử:
\(\left(9-2\right):1+1=8\) (phần tử)
b) Số phần tử:
\(\left(20-2\right):2+1=10\) (phẩn tử)
c) Số phần tử:
\(\left(25-1\right):3+1=9\) (phần tử)
d) Số phần tử:
\(\left(104-2\right):2+1=52\) (phần tử)
e) Số phần tử:
\(\left(470-5\right):5+1=94\) (phần tử)
f) Số phần tử:
\(\left(500-10\right):10+1=50\) (phần tử)
a) Với b = 6; c = -1, ta có:
3a - 6 - 2.(-1) = 2
=> 3a - 8 = 2
=> 3a = 2 - 8
=> 3a = -6
=> a = -6 : 3
=> a = -2
b) Với b = -7; x = 5, ta có:
12 - a + (-7) + 5.5 = -1
=> a - 7 + 25 = 12 + 1
=> a + 18 = 13
=> a = 13 - 18
=> a = -5
c) tương tự
a/ Thay b = 6 và c = -1 vào 3a - b - 2c = 2, ta có:
3a - 6 - 2.(-1) = 2
=> 3a - 6 + 2 = 2
=> 3a - 4 = 2
=> 3a = 6
=> a = 2
Vậy a = 2
b/ Thay b = -7 và c = 5 vào 12 - a + b + 5c = -1, ta có:
12 - a + (-7) + 5.5 = -1
=> 12 -a - 7 + 25 = -1
=> -a = -1 - 25 - 12 + 7
=> -a = -31
=> a = 31
Vậy a = 31
c/ Thay b = -3 và c = -7 vào 1 - 2b + c - 3a = -9, ta có:
1 - 2.(-3) + (-7) - 3a = -9
=> 1 + 6 - 7 - 3a = -9
=> -3a = -9 - 1 - 6 + 7
=> -3a = -9
=> a = 3
Vậy a = 3
\(a\)) \(Ta\) \(có\)\(:\) \(\left(a-b\right)-\left(c-d\right)=a-b-c+d\)
\(=a+\left(-b\right)+\left(-c\right)+d\)
\(=\left(a+d\right)+\left[\left(-b\right)+\left(-c\right)\right]\)
\(=\left(a+d\right)+\left[-\left(b+c\right)\right]\)
\(=\left(a+d\right)-\left(b+c\right)\)
Bài 1:
Chiều cao của tam giác là:
12,56 x 2 : 8 = 3,14 (cm)
Đáp số: 3,14 cm
Bài 2:
a) 2 + 5/7 = 2/1 + 5/7 = 14/7 + 5/7 = 19/7
b) 13/5 - 2 = 13/5 - 2/1 = 13/5 - 10/5 = 3/5
c) 1/8 + 3/4 - 1/6 = 3/24 + 18/24 - 6/24 = 17/24
e) 12/5 - 2/2 + 7/7 - 6/6 = 12/5 - 1 + 1 - 1 = 12/5 - 1 = 12/5 - 5/5 = 7/5
Bài 3:
A = 55/11.16 + 55/16.21 + 55/21.26 + 55/26.31 + 55/31.36 + 55/36.41
A = 11.(1/11 - 1/16 + 1/16 - 1/21 + 1/21 - 1/26 + 1/26 - 1/31 + 1/31 - 1/36 + 1/36 - 1/41)
A = 11.(1/11 - 1/41)
A = 11.30/451
A = 30/41
Bài 1 :
Chiều cao tam giác đó là :
\(12,56.2:8=3,14\) ( cm )
Vậy : chiều cao tam giác đó là \(3,14\) cm.
Bài 2 :
a) \(2+\frac{5}{7}=\frac{14}{7}+\frac{5}{7}=\frac{19}{7}\)
b) \(\frac{13}{15}-2=\frac{13}{15}-\frac{30}{15}=-\frac{17}{15}\)
c) \(3-\frac{3}{8}=\frac{24}{8}-\frac{3}{8}=\frac{21}{8}\)
d) \(\frac{1}{8}+\frac{3}{4}-\frac{1}{6}=\left(\frac{1}{8}+\frac{6}{8}\right)-\frac{8}{48}=\frac{7}{8}-\frac{8}{48}=\frac{42}{48}-\frac{8}{48}=\frac{34}{48}=\frac{17}{24}\)
e) \(\frac{12}{5}-\frac{2}{2}+\frac{7}{7}-\frac{6}{6}=\frac{12}{5}-1+1-1=\frac{12}{5}-1=\frac{12}{5}-\frac{5}{5}=\frac{7}{5}\)
Bài 3 :
\(A=\frac{55}{11.16}+\frac{55}{16.21}+\frac{55}{21.26}+....+\frac{55}{36.41}\)
\(\Leftrightarrow A=11.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}+\frac{5}{31.36}+\frac{5}{36.41}\right)\)
\(\Leftrightarrow A=11.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}+\frac{1}{31}-\frac{1}{36}+136\right)-\frac{1}{41}\)
\(\Leftrightarrow A=11.\left(\frac{1}{11}-\frac{1}{41}\right)=11.\frac{30}{451}=\frac{30}{41}\)
Vậy : \(A=\frac{30}{41}\)
Bài giải
a, \(1075\cdot\left(x-3\right)\cdot\left(x-1\right)=0\)
\(\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{3\text{ ; }1\right\}\)
b, \(2\cdot\left(x-7\right)+3\cdot\left(x+1\right)\)
\(=2x-14+3x+3\)
\(=5x-11\)
c, \(x+1+x+2+...+x+100=5750\)
\(\left(x+x+...+x\right)+\left(1+2+...+100\right)=5750\)
\(100x+\left(100-1+1\right)\cdot\left(100+1\right)\text{ : }2=5750\)
\(100x+100\cdot101\text{ : }5=5750\)
\(100x+50\cdot101=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(x=700\text{ : }100\)
\(x=7\)
a, ( x + 5 ).( y - 3 ) = 15 = 3 . 5 = 1 . 15 = ( -1) . ( - 15) = ( - 3) . ( -5)
x+5 | 3 | 5 | 1 | 15 | -1 | -15 | -3 | -5 | |||||||
y-3 | 5 | 3 | 15 | 1 | -15 | -1 | -5 | -3 | |||||||
x | -2 | 0 | -4 | 10 | -6 | -20 | -8 | -10 | |||||||
y | 8 | 6 | 18 | 4 | -12 | 2 | -2 | 0 |
Bài 3 : Cho a . b , tính |S| biết : S=-(-a-b-c) + (-c+b+a) - (a+b)
Đề sai ,ko bao giờ đề cho a.b vì chỉ có cộng trừ thôi .Nên đề phải là a>b
Ta có: S=-(-a-b-c) + (-c+b+a) - (a+b)
S= -a+b+c-c+b+a-a-b
S= (-a+a-a)+(b+b-b)+(c-c)
S=-a+b+0
S=b-a
Mà \(a>b\Rightarrow b-a< 0\)
\(\Leftrightarrow\left|S\right|=\left|b-a\right|=a-b\)
Vậy |S|=|b-a|=a-b
mk đây
kb vs mk đi
con kia