\(CM:\dfrac{a^3+b^3+c^4}{b^3+c^3+d^3}=\dfrac{a}{d}\)GIÚP MÌNH VỚIIIIIIII...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

sao khó vậy

câu dướiHoàng Oanh

3 tháng 12 2017

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{b}{c}\\\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=t\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=t^3\\\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}=t^3\end{matrix}\right.\)

Ta có đpcm

3 tháng 12 2017

Ta có :

\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)

\(c^2=bd\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)

Áp dụng t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(3\right)\)

Lại có :

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(4\right)\)

Từ \(\left(3\right)+\left(4\right)\Leftrightarrowđpcm\)

3 tháng 3 2017

Giải:

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)

Vậy...

3 tháng 3 2017

thanks

lam pn dc chu pneoeo

18 tháng 6 2019

day la cac tinh chat ma

18 tháng 6 2019

ê mk cần câu trả lời cho bài trên okibucquabucminh

7 tháng 10 2017

1) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (1)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

2) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)

Ta có: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (2)

Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

8 tháng 10 2017

lm cách ap dung tc day ti so = nhau

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

18 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{b}{d}=\dfrac{a^3}{c^3}=\dfrac{c^3}{b^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+c^3-b^3}{c^3+b^3-d^3}\left(1\right)\)

Từ \(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{b}{d}\)

Ta xét tích: \(\left(\dfrac{a}{c}\right)^3=\dfrac{a}{c}.\dfrac{a}{c}.\dfrac{a}{c}=\dfrac{a}{c}.\dfrac{c}{b}.\dfrac{b}{d}=\dfrac{a}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{a^3+c^3-b^3}{c^3+b^3-d^3}=\dfrac{a}{d}\left(dpcm\right)\)

5 tháng 2 2018

hay

5 tháng 11 2018

a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )

=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)

VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)

Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)

5 tháng 11 2018

thanks bn nhìu nha ok

2 tháng 8 2018

bài này bạn cứ đặt a=bk, c=dk là được dễ tính lắm sao đó thì thay vào rồi rút gọn là được khi đó bạn sẽ chứng minh được dễ dàng hihi

3 tháng 8 2018

bạn giải luôn giúp mình nha Huyền Anh Lê