Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ghi sai đề rồi \(4\) chứ không phải \(\sqrt{4}\) nha bạn
a: \(=2-\sqrt{3}+2+\sqrt{3}=4\)
b: \(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}-1+\sqrt{5}+1\right)=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
\(a^2+b^2+ab+2=a^2+2.\dfrac{1}{2}ab+\dfrac{b^2}{4}+\dfrac{3b^2}{4}+2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}+2\)
Do : \(\left\{{}\begin{matrix}\left(a+\dfrac{b}{2}\right)^2\ge0\\\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)\(\Rightarrow\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}+2>0\)
a)
a)Kẻ DE ⊥ AB, DF ⊥ AC
Tứ giác AEDF có ∡FAE = ∡AED = 90 độ
⇒ Tứ giác AEDF là hình chữ nhật
Ta có: AD là tia phân giác ∡BAC hay ∡EAF
⇒ Tứ giác AEDF là hình vuông
⇒ DE = DF = AD/√2
ΔABC có AB//DF (cùng ⊥ với CA)
⇒ DF/DB = CD/BC
Tương tự: AC//DE ⇒ DE/AC = BD/BC
⇒ DF/AB + DE/AC = (CD+BD)/BD
⇔ AD/(AB√2) + AD/(AC√2) = BC/BC
⇔ 1/AB + 1/AC = √2/AD (đpcm)
Cần cù bù thông minh ( ͡° ͜ʖ ͡°)
\(BDT\Leftrightarrow\frac{a^3+abc}{b^2+c^2}-a+\frac{b^3+abc}{c^2+a^2}-b+\frac{c^3+abc}{a^2+b^2}-c\ge0\)
\(\Leftrightarrow\frac{a\left(a^2+bc-b^2-c^2\right)}{b^2+c^2}+\frac{b\left(b^2+ac-c^2-a^2\right)}{c^2+a^2}+\frac{c\left(c^2+ab-a^2-b^2\right)}{a^2+b^2}\ge0\)
\(\LeftrightarrowΣ_{cyc}\frac{a\left(\left(a-b\right)\left(a+2b-c\right)-\left(c-a\right)\left(a+2c-b\right)\right)}{b^2+c^2}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)\left(\frac{a\left(a+2b-c\right)}{b^2+c^2}-\frac{b\left(b+2a-c\right)}{a^2+c^2}\right)\right)\ge0\)
\(\LeftrightarrowΣ_{cyc}\left((a-b)^2\left(\frac{(a^3+b^3-c^3+3a^2b+3ab^2-a^2c-b^2c-abc+ac^2+bc^2)}{(a^2+c^2)(b^2+c^2)}\right)\right)\ge0\)