\(CM:a^3+b^3+abc\supseteq ab\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

Bạn ghi sai đề rồi \(4\) chứ không phải \(\sqrt{4}\) nha bạn

a: \(=2-\sqrt{3}+2+\sqrt{3}=4\)

b: \(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}-1+\sqrt{5}+1\right)=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

25 tháng 9 2018

\(a^2+b^2+ab+2=a^2+2.\dfrac{1}{2}ab+\dfrac{b^2}{4}+\dfrac{3b^2}{4}+2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}+2\)

Do : \(\left\{{}\begin{matrix}\left(a+\dfrac{b}{2}\right)^2\ge0\\\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)\(\Rightarrow\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}+2>0\)

20 tháng 7 2019

mình làm dc rồi nh

13 tháng 10 2020

a)

a)Kẻ DE ⊥ AB, DF ⊥ AC

Tứ giác AEDF có ∡FAE = ∡AED = 90 độ

⇒ Tứ giác AEDF là hình chữ nhật

Ta có: AD là tia phân giác ∡BAC hay ∡EAF

⇒ Tứ giác AEDF là hình vuông

⇒ DE = DF = AD/√2

ΔABC có AB//DF (cùng ⊥ với CA)

⇒ DF/DB = CD/BC

Tương tự: AC//DE ⇒ DE/AC = BD/BC

⇒ DF/AB + DE/AC = (CD+BD)/BD

⇔ AD/(AB√2) + AD/(AC√2) = BC/BC

⇔ 1/AB + 1/AC = √2/AD (đpcm)

13 tháng 10 2020

Hỏi đáp Toán

3 tháng 1 2018

ko hieu

6 tháng 1 2018

Cần cù bù thông minh ( ͡° ͜ʖ ͡°)

\(BDT\Leftrightarrow\frac{a^3+abc}{b^2+c^2}-a+\frac{b^3+abc}{c^2+a^2}-b+\frac{c^3+abc}{a^2+b^2}-c\ge0\)

\(\Leftrightarrow\frac{a\left(a^2+bc-b^2-c^2\right)}{b^2+c^2}+\frac{b\left(b^2+ac-c^2-a^2\right)}{c^2+a^2}+\frac{c\left(c^2+ab-a^2-b^2\right)}{a^2+b^2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\frac{a\left(\left(a-b\right)\left(a+2b-c\right)-\left(c-a\right)\left(a+2c-b\right)\right)}{b^2+c^2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)\left(\frac{a\left(a+2b-c\right)}{b^2+c^2}-\frac{b\left(b+2a-c\right)}{a^2+c^2}\right)\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left((a-b)^2\left(\frac{(a^3+b^3-c^3+3a^2b+3ab^2-a^2c-b^2c-abc+ac^2+bc^2)}{(a^2+c^2)(b^2+c^2)}\right)\right)\ge0\)

29 tháng 9 2015

Bạn nhờ Trần Đức Thắng ý